Phase transition of hydrolyzed polyacrylamide gels in aqueous solutions of poly (ethylene glycol)

Phase transition of hydrolyzed polyacrylamide gels in aqueous solutions of poly (ethylene glycol)

Hydrolyzed polyacrylamide gels immersed in aqueous solutions of poly(ethylene glycol) (PEG) of molecular weight 300 exhibit a discontinuous volume change upon continuous increase of the PEG concentration in the external solution. As the duration of hydrolysis increases, that is, as the proportion of the ionic groups on the network chains increases, the critical concentration of PEG required for a discontinuous volume change rises and, also, the magnitude of the volume collapse becomes larger. Experimental results indicate that the gel collapse in PEG solution is due to the osmotic deswelling of the ionic gel rather than due to a complex formation between polyacrylamide and PEG chains.

___

  • 1. K. Dusek and D. Patterson, J. Polym. Sci. A-2, 6, 1209 (1968)
  • 2. K. Dusek and W. Prins, Adv. Polym. Sci. 6, 1 (1969)
  • 3. A. R. Khokhlov, Polymer 21, 376 (1980)
  • 4. M. Ilaysky, Polymer 22, 1687 (1981)
  • 5. B. Erman and P. J. Flory, Macromolecules 19, 2342 (1986)
  • 6. T. Tanaka, Phys. Rev. Lett. 40, 820 (1978)
  • 7. T. Tanaka, Polymer 20, 1404 (1979)
  • 8. V. F. Janas, F. Rodriguez, and C. Cohen, Macromolecules 13, 977 (1980)
  • 9. T. Tanaka, D. Fillmore, S-T. Sun, I. Nishio, G. Swislow, and A. Shah, Phys. Rev. Lett. 45, 1636 (1980).
  • 10. M. Ilaysky, Macromolecules 15, 7824 (1982)
  • 11. M. Shibayama and T. Tanaka, Adv. Polym. Sci. 109, 1 (1993)
  • 12. M. Ilaysky, Adv. Polym. Sci. 109, 173 (1993)
  • 13. N. Kayaman, 0. Okay, and B. M. Baysal, Polymer Gels and Networks 5, 167 (1997)
  • 14. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, NY, 1953.
  • 15. H. Morawetz, private communication, October 2, 1995
  • 16. I. Illiopoulos and R. Audebert, Polym. Bull. 13, 171 (1985).
  • 17. 0. E. Philippova, N. S. Karibyants, and S. G. Starodubtzev, Macromolecules 27, 2398 (1994)
  • 18. T. Tanaka, Scientific Am. 244, 110 (1981)
  • 19. M. Ilaysky, J. Hrouz, J. Stejskal, and K. Bouchal, Macromolecules 17, 2868 (1984)
  • 20. W. Oppermann, S. Rose, and G. Rehage, Brit. Polym. J. 17, 175 (1985).
  • 21. F. E. Bailey, Jr, R. D. Lundberg, and R. W. Callard, J. Polym. Sci. A2, 845 (1964).
  • 22. A. D. Antipina, I. M. Papissov, and V. A. Kabanov, ysokomol. Soedin. B12, 329 (1970)
  • 23. T. Ikawa, K. Abe, K. Honda, and E. Tsuchida, J. Polym. Sci. Polym. Chem. Ed. 13, 1505 (1975)
  • 24. H-L. Chen and H. Morawetz, Macromolecules 15, 1445 (1982)
  • 25. H. L. Chen and H. Morawetz, Eur. Polym. J. 19, 923 (1983)
  • 26. B. Bednar, H. Morawetz, and J. A. Shafer, Macromolecules 17, 1636 (1984)
  • 27. Y. Osada and M. Sato, J. Polym. Sci. C14, 129 (1976)
  • 28. Y. Osada, J. Polym. Sci. Polym. Chem. Ed. 17, 3485 (1979)
  • 29. J. P. Baker, L. H. Hong, H. W. Blanch, and J. M. Prausnitz, Macromolecules 27, 1446 (1994)
  • 30. J. Brandrup and E. H. Immergut, "Polymer Handbook", 2nd Edition, John Wiley, 1975, p. IV-133.