Possible roles of transition metals in cloudwater relative to the solar short-wave radiation absorption anomaly

Possible roles of transition metals in cloudwater relative to the solar short-wave radiation absorption anomaly

Measurements of the absorption of solar short-wave radiation by clouds exceed those predicted by theoretical calculations. In order to understand the roles of minor and trace species in this absorption anomaly, cloudwater samples were collected from individual precipitating clouds and analyzed for trace metals and anionic species. Two generalized approaches were used to assess the direct impact of the absorption of solar short-wave radiation by transition metals and/or their anionic complexes. Additionally, it was suggested that iron and manganese may act as catalyts in the formation of sulfate aerosols which efficiently scatter solar radiation.

___

  • 1. J. H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution, John Wiley and Sons, Inc., New York, (1986).
  • 2. G. L. Stephens and S. Tsay, Q. 3. R. Meteorol. Soc., 116, 671-704, (1990).
  • 3. R. D. Cess, et al., Science, 267, 496-499 (1995).
  • 4. V. Ramanathan, et al., Science, 267, 499-503, (1995).
  • 5. P. Pilewskie and P. J. Valero, Science, Z67, 1626-1629, (1995).
  • 6. E. C. Voldner and M. Alvo, Environ. Sci. Technol., 23, 1223-1232, (1989).
  • 7. Jr. B. Daube, K. D. Kimball, P. Lamar and K. C. Weathers, Atmospheric Environment, 21, 893-900 (1987).
  • 8. G. E. Likens, F. H. Bormann, N. M. Johnson and R. S. Pierce, Ecology, 48, 772-785, (1967).
  • 9. I. Olmez, et al., Source signatures in cloud water, in Proceedings of the 1988 EPA/APCA Inter- national Symposium on the Measurement of Toxic and Related Air Pollutants, Research Triangle Park, NC, (1988).
  • 10. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press Ltd., Oxford, the Great Britain, (1994).
  • 11. B. J. Mason, The Physics of Glouds, 2nd Edition, Oxford University Press, Ely House, London W. 1., (1971).
  • 12. G. M. Hale and M. R. Querry, Applied Optics, 12, 555-563, (1973).
  • 13. B. C. Faust, Environ. Sei. Technol., 28, 217A-222A, (1994).
  • 14. C. J. Weschler, M. L. Mandich and T. E. Graedel, 3. Geophys. Res., 91, 5189-5204 (1986).
  • 15. T. E. Graedel, M. L. h4andich and C. J. Weschler, 3. Geophys. Res., 91, 5205-5221, (1986).
  • 16 J. M. Hales, “Chapter 8: A Modeling Investigation of Nonlinearities in the Wet Removal of SO 2 Emitted by Urban Sources,” in Atmospheric Chemistry: Models and Predications for Climate and Air Quality (edited by C. S. Sloane and T. W. Tesche), Lewis Publishers, Inc., MI, (1991).
  • 17. Y. Zuo and J. Hoigne, Science, Z60, 71-73.
  • 18. B. C. Faust, C. Anastasio, J. M. Allen and T. Arakaki, Science, 260, 73-75 (1993).
  • 19. L. R. Martin, Kinetics studies of sulfite oxidation in aqueous solution. In SO 2 , NO and NO 2 Oxidation Mechanisms: Atmospheric Consideration (edited by J. G. Calvert), Acid Precipitation Series, 3 63-100. Butterworth, Boston (1984).
  • 20. T. Ibusuki and K. Takeuchi, Atmospheric Environment, 21 1555-1560, (1987).
  • 21. I. Grgic, V. Hudnik, . Bizjak and J. Levec, Atmospheric Environment, 26A, 571-577, (1992).