Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units

The nucleophilic substitution reactions of mono- and bis-spiro-2,2' -dioxybiphenyl cyclotriphosphazenes (3 and 4) with cyclopropanemethylamine (5) and aniline (6) were performed in the presence of trimethylamine in THF. Five novel cyclopropanemethylamino- and anilino-substituted spiro-2,2' -dioxybiphenyl cyclotriphosphazene derivatives (7-11) were obtained from these reactions. The molecular structures of the new cyclotriphosphazene derivatives (7- 11) were characterized by elemental analysis, MALDI-TOF MS, FT-IR, and NMR ( 31P and 1H) spectroscopies. The structure of the spiro-(2,2' -dioxybiphenyl)-bis-(anilino)-cyclotriphosphazene (11) was also determined by single-crystal X-ray crystallography.

___

  • 1. Mukundam V, Dhanunjayarao K, Mamidala R, Venkatasubbaiah K. Synthesis, characterization and aggregation induced enhanced emission properties of tetraaryl pyrazole decorated cyclophosphazenes. Journal of Materials Chemistry C 2016; 4 (16): 3523-3530.
  • 2. Caminade AM, Hameau A, Majoral JP. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions 2016; 45 (5): 1810-1822.
  • 3. Wang L, Yang YX, Shi X, Mignani S, Caminade AM et al. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. Journal of Materials Chemistry B 2018; 6 (6): 884-895.
  • 4. Januszewski R, Dutkiewicz M, Orwat B, Maciejewski H, Marciniec B. A library of multisubstituted cyclotriphosphazenes molecular scaffolds for hybrid materials. New Journal of Chemistry 2018; 42 (19): 15552-15555.
  • 5. Tanrıverdi-Eçik E, Şenkuytu E, Cebesoy Z, Çiftçi GY BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. RSC Advances 2016; 6 (53): 47600-47606.
  • 6. Şenkuytu E, Tanrıverdi-Eçik E, Durmuş M, Çiftçi GY. Monofunctional amines substituted fluorenylidene bridged cyclotriphosphazenes: ‘Turn-off’ fluorescence chemosensors for Cu 2+ and Fe 3+ ions. Polyhedron 2015; 101: 223- 229.
  • 7. Chandrasekhar V, Narayanan RS. Metalation studies of 3- and 4-pyridyloxycyclophosphazenes: Metallamacrocycles to coordination polymers. Dalton Transactions 2013; 42 (18): 6619-6632.
  • 8. Bilge S, Demiriz Ş, Okumuş A, Kılıç Z, Tercan B et al. Phosphorus−Nitrogen Compounds. Part 13. Syntheses, crystal structures, spectroscopic, stereogenic, and anisochronic properties of novel spiro-ansa-spiro-, spiro-binospiro-, and spiro-crypta phosphazene derivatives. Inorganic Chemistry 2006; 45 (21): 8755-8767.
  • 9. Okutan E, Çoşut B, Yeşilot S. Synthesis and properties of fullerene (C60) substituted cyclophosphazene derivatives. Inorganic Chemistry Communications 2014; 49: 1-4.
  • 10. Allen CW. Regio-and stereochemical control in substitution reactions of cyclophosphazenes. Chemical Reviews 1991; 91 (2): 119-135.
  • 11. Chandrasekhar V, Thilagar P, Pandian M. Cyclophosphazene-based multi-site coordination ligands. Coordination Chemistry Reviews 2007; 251: 1045-1074.
  • 12. Benson MA, Ledger J, Steiner A. Zwitterionic phosphazenium phosphazenate ligands. Chemical Communications 2007; 3823-3825.
  • 13. Ibisoglu H, Besli S, Yuksel F, Un I, Kılıç A. Investigation of nucleophilic substitution pathway for the reactions of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes. Inorganica Chimica Acta 2014; 409: 216-226.
  • 14. Tanrıverdi-Eçik E, Beşli S, Yenilmez-Çiftçi G, Davies DB, Kılıç A et al. Stereo -selectivity in a cyclotriphosphazene derivative bearing an exocyclic P-O moiety Dalton Transactions 2012; 41, 6715-6725.
  • 15. Bartlett SW, Coles S.J, Davies DB, Hursthouse MB, Ibisoglu H et al. Structural investigations of phosphorus– nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3 Cl (6−n) (NHBut)n derivatives. Acta Crystallographica Section B 2006; B62, 321-329.
  • 16. Siwy M, Se ffk D, Kaczmarczyk B, Jaroszewicz I, Nasulewicz A et al. Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy) cyclotriphosphazene derivatives. Journal of medicinal chemistry 2006; 49 (2): 806-810.
  • 17. Çiftçi GY, Şenkuytu E, İncir SE, Tanrıverdi-Eçik E, Zorlu Y et al. Characterization of paraben substituted cyclotriphosphazenes, and a DNA interaction study with a real-time electrochemical profiling based biosensor. Microchimica Acta 2017; 184 (7): 2307-2315.
  • 18. Tümay SO, Uslu A, AlidağıHA, Kazan HH, Bayraktar C et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg (II) based on pyrenyl - functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry 2018; 42 (17): 14219-14228.
  • 19. Nishimoto T, Yasuda T, Lee SY, Kondo R, Adachi CA. Six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed - fluorescence OLEDs. Materials Horizons 2014; 1 (2): 264-269.
  • 20. Ün İ, İbişoğlu H, Ün ŞŞ, Çoşut B, Kılıç A. Syntheses, characterizations, thermal and photophysical properties of cyclophosphazenes containing adamantane units. Inorganica Chimica Acta 2013; 399: 219-226
  • 21. Chandrasekhar V, Senapati T, Dey A, Das S, Kalisz M et al. Cyclo-and carbophosphazene - supported ligands for the assembly of heterometallic (Cu 2+ /Ca 2+ , Cu 2+ /Dy 3+ , Cu 2+ /Tb 3+) complexes: Synthesis, structure, and magnetism. Inorganic Chemistry 2012; 51 (4): 2031-2038.
  • 22. Ainscough EW, Brodie AM, Edwards PJ, Jameson GB, Otter CA et al. Zinc, cadmium, and mercury complexes of a pyridyloxy-substituted cyclotriphosphazene: Syntheses, structures, and fluxional behavior. Inorganic Chemistry 2012; 51 (20): 10884-10892.
  • 23. Chandrasekhar V, Pandey MD, Das B, Mahanti B, Gopal K et al. Synthesis, structure and photo-physical properties of phosphorus-supported fluorescent probes. Tetrahedron 2011; 67 (36): 6917-6926.
  • 24. Wu X, Liu SZ, Tian DT, Qiu JJ, Liu CM. Well-defined organic-inorganic hybrid benzoxazine monomers based on cyclotriphosphazene: Synthesis, properties of the monomers and polybenzoxazines. Polymer 2011; 52 (19): 4235-4245.
  • 25. Ainscough EW, Brodie AM, Derwahl A, Kirk S, Otter CA. Conformationally rigid chelate rings in metal complexes of pyridyloxy-substituted 2,2′-dioxybiphenyl-cyclotetra and cyclotriphosphazene platforms. Inorganic Chemistry 2007; 46 (23): 9841-9852.
  • 26. Bruker. SADABS. Madison, WI, USA: Bruker AXS Inc., 2005.
  • 27. Bruker. APEX2 (Version 2011.4-1). Madison, WI, USA: Bruker AXS Inc., 2008.
  • 28. Sheldrick GM. A short history of SHELX. Acta Crystallographica A 2008; 64 (1): 112-122.
  • 29. Spek AL. Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography 2003; 36: 7-13
  • 30. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP et al. Journal of Applied Crystallography 2006; 39: 453-457.
  • 31. Brandenburg K. DIAMOND 3.1 for Windows. Crystal Impact GbR, Bonn, Germany, 2006.
  • 32. Carriedo GA, Fernández-Catuxo L, García-Alonso FJ, Gómez-Elipe P, González PA. Preparation of a new type of phosphazene high polymers containing 2,2′ -dioxybiphenyl groups. Macromolecules 1996; 29 (16): 5320-5325.