Novel nonperipheral octa-3-hydroxypropylthio substituted metallo-phthalocyanines: synthesis, characterization, and investigation of their electrochemical, photochemical and computational properties

Novel nonperipheral octa-3-hydroxypropylthio substituted metallo-phthalocyanines: synthesis, characterization, and investigation of their electrochemical, photochemical and computational properties

The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) (4), copper (II) (5), nickel (II) (6) and zinc(II) (7) phthalocyanine derivatives. These novelcompounds were characterized by elemental analysis, $^{1}H, ^{13}C$ NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallophthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO) $^{1}H, ^{13}C$ NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.

___

  • 1. Torre GD, Vazquez P, Agullo-Lopez F, Torres T. Phtahlocyanines and related compounds: Organic targets for nonlinear optical applications. Journal of Materials Chemistry 1998; 8: 1671-1683. doi: 10.1039/A803533D
  • 2. Leznoff CC, Lever ABP. Phthalocyanines Properties and Applications 3. New York, NY, USA: Wiley-VCH, 1993.
  • 3. Leznoff CC, Lever ABP. Phthalocyanines Properties and Applications 1. New York, NY, USA: Wiley-VCH, 1989.
  • 4. Parra V, Bouvet M, Brunet J, Rodríguez-Méndez ML, Saja JA. On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films. Thin Solid Films 2008; 5: 9012-9019. doi: 10.1016/j.tsf.2007.11.092
  • 5. Bouvet M. Phthalocyanine-based field-effect transistors as gas sensors. Analytical and Bioanalytical Chemistry 2006; 384: 366-373. doi: 10.1007/s00216-005-3257-6
  • 6. Yang F, Forrest SR. Photocurrent generation in nanostructured organic solar cells. ACS Nano 2008; 2 (5): 1022-1032. doi: 10.1021/ nn700447t
  • 7. Forrest SR. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chemical Review 1997; 97 (6): 1793-1896. doi: 10.1021/cr941014o
  • 8. Leznoff CC, Lever ABP. Phthalocyanines Properties and Applications 2. New York, NY, USA: Wiley-VCH, 1993.
  • 9. Bilgin A, Ertem B, Gök Y. Synthesis and characterization of new metal-free and metallophthalocyanines containing spherical or cylindrical macrotricyclic moieties. Polyhedron 2005; 24: 1117-1124. doi: 10.1016/j.poly.2005.01.025
  • 10. Leznoff CC, Lever ABP. Phthalocyanines Properties and Applications 4. New York, NY, USA: Wiley-VCH, 1996.
  • 11. Emmelius M, Pawlowski G, Vollmann HW. Materials for optical data storage, Angewandte Chemie International Edition 1989; 28 (11): 1445-1471. doi: 10.1002/anie.198914453.
  • 12. Yılmaz F, Özer M, Kani İ, Bekaroğlu Ö. Catalytic activity of a thermoregulated, phase-seperable Pd(II)-perfluoroalkylphthalocyanine complex in an organic/fluorous biphasic system: hydrogenation of olefins. Catalysis Letters 2009; 130: 642-647. doi: 10.1007/s10562-009- 9959-1
  • 13. Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochemistry and Photobiology 1991; 53 (6): 859-870.doi: 10.1111/j.1751- 1097.1991.tb09900.x
  • 14. Özçeşmeci İ, Okur Aİ, Gül A. New phthalocyanines bearing tetra(hydroxylethylthio) functionalities. Dyes and Pigments 2007; 75(3): 761- 765. doi: 10.1016/j.dyepig.2006.08.003
  • 15. Necedova MM, Martinicka A, Magdolen P, Novakova V, Zahradnik P. Phthalocyanine-triphenylamine dyads: synthesis, electrochemical, spectral and DFT study. Dyes and Pigments 2017; 141: 448-456.doi: 10.1016/j.dyepig.2017.02.025
  • 16. Wannebroucq A, Meunier-Prest R, Chambron JC, Braxhais CH, Suisse JM et al. Synthesis and characterization of fluorophthalocyanines bearing four 2-(2-thienyl)ethoxy moieties: from the optimization of the fluorine substitution to chemosensing. RCS Advances 2017; 7: 41272-41281. doi: 10.1039/c7ra05325hrsc.li/rsc-advances
  • 17. Tuncer S, Koca A, Gül A, Avcıata U. 1,4-Dithiaheterocycle-fused porphyrazines: Synthesis, characterization, voltammetric and spectroelectrochemical properties. Dyes and Pigments 2009; 81 (2): 144-151. doi: 10.1016/j.dyepig.2008.09.022
  • 18. Gurol I, Durmuş M, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Transactions 2007; 34: 3782-3791.doi: 10.1039/B704345G
  • 19. TaratulaO, Schumann C, Nalewey MA, Pong AJ, Chan KJ, et al.A multifunctional theronostic platform based on phthalocyanine-loaded dendrimer for imge-guided drug delivery and phthadynamictheraphy. Molecular Pharmaceuties 2013; 10 (10): 3946-3958. doi: 10.1021/ mp400397t
  • 20. Shao J, Dai Y, Zhao W, Xie J, Xue J et al. Intracellular distribution and mechanism of photosensitizer Zn(II)-phthalocyanine solubilized in cremophor EL against human hepatocellular carcinoma HepG2 cells. Cancer Letters 2013; 330 (1): 49-56. doi: 10.1016/j.canlet.2012.11.017
  • 21. Durmuş M. Photochemical and photophysical charactrization. In: Nyokong T, Ahsen V (editors). Photosensitizers in Medicine, Environment and Security. New York, NY, USA: Springer, 2012, pp. 135-266.
  • 22. Wang R, Zhao Y, Zhu C, Huang X. New Synthesis of 3,6-dibromophthalonitrile and phthalocyanine having eight thienyl substituents at peripheral α-positions. Journal of Heterocyclic Chemistry 2015; 52 (4): 1230-1233. doi: 10.1002/jhet.2130
  • 23. Baygu Y, Gök Y. A highly water-soluble zinc(II) phthalocyanines as potential for PDT studies: synthesis and characterization. Inorganic Chemistry Communication 2018; 96: 133-138. doi: 10.1016/j.inoche.2018.08.004
  • 24. Nyokong T. Structure and Bonding: Functional Phthalocyanine Molecular Materials. Berlin, Germany: Springer, 2010, pp. 45-88.
  • 25. Kobayashi N, Furuyama T, Satoh K. Rationally designed phthalocyanines having their main absorption band beyond 1000 nm. Journal of the American Chemical Society 2011; 133 (49): 19642-19645. doi: 10.1021/ja208481q
  • 26. Huhey JE. Inorganic Chemistry. New York, NY, USA: Harper Int. Ed., 1978, pp. 16.
  • 27. Furuyama T, Satoh K, Kushiya T, Kobayashi N. Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm. Journal of the American Chemical Society 2014; 136 (2): 765-776. doi: 10.1021/ja411016f
  • 28. Koçan H, Burat AK. Synthesis and characterization of [7-(trifluoromethyl)-quinolin-4-yl] oxy-substituted phthalocyanines. Monatshefte für Chemie 2013; 144: 171-177. doi: 10.1007/s00706-012-0790-9
  • 29. Engelkamp H, Nolte RJM. Molecular materials based on crown ether functionalized phthalocyanines. Journal of Porphyrins and Phthalocyanine 2000; 4 (5): 454-459. doi: 10.1002/1099-1409(200008)4:5<454::AID-JPP261>3.0.CO;2-D
  • 30. Nas A, Biyiklioglu Z, Fandaklı S, Sarkı G, Yalazan H et al. Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy) substituted cobalt, iron and manganese phthalocyanines: synthesis and electrochemical analysis. Inorganica Chimica Acta 2017; 466: 86-92. doi: 10.1016/j.ica.2017.05.050
  • 31. Hanabusa K, Shirai H. Catalytic functions and application of metallophthalocyanine polymers. ChemInform 1993; 24 (43): 197-222. doi: 10.1002/chin.199343294
  • 32. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT et al. A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 2018; 95 (2): 197-206. doi: 10.1021/acs.jchemed.7b00361
  • 33. Francl MM, Pietro WJ, Hehre WJ. Self-consistent molecular orbital methods, XXIII. A polarization-type basis set for second-row elements. The Journal of Chemical Physics 1982; 77 (7): 3654-3665. doi: 10.1063/1.444267
  • 34. Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta 1973; 28: 213-222. doi: 10.1007/BF00533485
  • 35. Figgen D, Rauhut G, Dolg M, Stoll H. Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data. Chemical Physics 2005; 311 (1-2): 227-244. doi: 10.1016/j.chemphys.2004.10.005
  • 36. Peterson KA, Puzzarini C. Systematically convergent basis sets for transition metals. II. pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts 2005; 114: 283-296. doi: 10.1007/ s00214-005-0681-9
  • 37. Yıldız B, Baygu Y, Kara I, Dal H, Gök Y. The synthesis, characterization and computational investigation of new metalloporphyrazinecontaining 15-membered $S_4$ donor macrocyclic moieties. Tetrahedron 2016; 72 (44): 6972-6981. doi:10.1016/j.tet.2016.09.028
  • 38. Shao W, Wang H, He S, Shi L, Peng K et al. Photophysical properties and singlet oxygen generation of three sets of halogenated corroles. Journal of Physical Chemistry B 2012; 116 (49): 14228-14234. doi: 10.1021/jp306826p
  • 39. Tillo A, Stolarska M, Kryjewski M, Popenda L, Sobotta L et al. Phthalocyanines with bulky substituents at non-peripheral positionssynthesis and physico-chemical properties. Dyes and Pigments 2016; 127: 110-115. doi: 10.1016/j.dyepig.2015.12.017
  • 40. Sakamoto K, Watabiki S, Yoshino S, Komoriya T. Synthesis of alkylthio substituted pyridoporphyrazines and their photophysicochemical properties. Journal of Porphyrins and Phthalocyanines 2017; 21: 658-664. doi: 10.1142/S1088424617500626
  • 41. Tekdaş DA, Kumru U, Gürek AG, Durmuş M, Ahsen V et al. Towards near-infrared photosensitisation: a photosensitising hydrophilic non-peripherally octasulfanyl-substituted Zn phthalocyanine. Tetrahedron Letters 2012; 53: 5227-5230. doi: 10.1016/j.tetlet.2012.07.062
  • 42. Erdoğmuş A, Durmuş M, Uğur AL, Avciata O, Avciata U et al. Synthesis, photophysics, photochemistry and fluorescence quenching studies on highly soluble substituted oxo-titanium(IV) phthalocyanine complexes. Synthetic Materials 2010; 160 (17-18): 1868-1876. doi: 10.1016/j.synthmet.2010.07.002
  • 43. Baygu Y, Yıldız B, Kara I, Dal H, Gök Y. Synthesis, characterization and computational investigation of novel metalloporphyrazines containing 15-membered$O_2S_2$-donor macrocyclic moieties. Journal of Porphyrins and Phtalocyanines 2018; 22: 207-220. doi: 10.1142/ S1088424618500104