Cytotoxic and apoptotic potential of some coumarin and 2-amino-3-carbonitrile selenophene derivatives in prostate cancer

Cytotoxic and apoptotic potential of some coumarin and 2-amino-3-carbonitrile selenophene derivatives in prostate cancer

3-acetyl coumarin derivatives (1a-d) are formed as a result of condensation of salicylaldehyde derivatives and ethyl acetoacetate and were converted into coumarin-selenophene hybrid compounds (2a-d) in the basic medium by modified Gewald reaction in the presence of malononitrile and selenium. Products are characterized by nuclear magnetic resonance (NMR). The prepared compounds are screened for their anticancer activity against DU-145 cell line. In addition, selected target compounds are evaluated for apoptosis and oxidative stress on DU-145 (prostate carcinoma) cell lines.

___

  • 1. Erşatır M, Akbaşlar D, Demirkol O, Giray ES. Cross-aldol reaction of 3-acetyl-2H-chromen-2-one by using Amberlyst 26A as catalyst. Synthetic Communications 2017; 47 (1): 68-77. doi: 10.1080/00397911.2016.1252047
  • 2. Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. European Journal of Medicinal Chemistry 2016; 123: 236-255. doi: 10.1016/j.ejmech.2016.07.056
  • 3. Curini M, Epifano F, Maltese F, Marcotullio MC, Gonzales SP et al. Synthesis of collinin, an antiviral coumarin. Australian Journal of Chemistry 2003; 56: 59-60. doi: 10.1071/CH02177
  • 4. Erşatır M, Yıldırım M, Giray ES, Yalın S. Synthesis and antiproliferative evaluation of novel biheterocycles based on coumarin and 2-aminoselenophene-3-carbonitrile unit. Monatshefte für Chemie - Chemical Monthly 2020; 151: 625-636. doi: 10.1007/s00706-020- 02573-x
  • 5. Siddiqui N, Arshad MF, Khan SA. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Poloniae Pharmaceutica - Drug Research 2009; 66: 161-167
  • 6. Amin KM, Rahman DEA, Al-Eryani YA. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorganic & Medicinal Chemistry 2008; 16: 5377-5388. doi: 10.1016/j.bmc.2008.04.021
  • 7. Hejchman E, Taciak P, Kowalski S, Maciejewska D, Czajkowska A et al. Synthesis and anticancer activity of 7-hydroxycoumarinyl gallates. Pharmacological Reports 2015; 67: 236-244. doi: 10.1016/j.pharep.2014.09.008
  • 8. Mirunalini S, Deepalakshmi K, Manimozhi J. Antiproliferative effect of coumarin by modulating oxidant/antioxidant status and inducing apoptosis in Hep2 cells. Biomedicine & Aging Pathology 2014; 4: 131-135. doi: 10.1016/j.biomag.2014.01.006
  • 9. Zhang L, Xu Z. Coumarin-containing hybrids and their anticancer activities. European Journal of Medicinal Chemistry 2019; 181: 111587. doi: 10.1016/j.ejmech.2019.111587
  • 10. Emami S, Dadashpour S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry 2015; 102: 611-630. doi: 10.1016/j.ejmech.2015.08.033
  • 11. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research 2013; 36: 375-399. doi: 10.1007/s12272-013-0036-3
  • 12. Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P et al. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorganic & Medicinal Chemistry 2013; 21: 146-152. doi: 10.1016/j. bmc.2012.10.045
  • 13. de Souza LG, Rennã MN, Figueroa-Villar JD. Coumarins as cholinesterase inhibitors: A review. Chemico-Biological Interactions 2016; 254: 11-23. doi: 10.1016/j.cbi.2016.05.001
  • 14. Ebrahimi SES, Ghadirian P, Emtiazi H, Yahya-Meymandi A, Saeedi M et al. Hetero-annulated coumarins as new AChE/BuChE inhibitors: synthesis and biological evaluation. Medicinal Chemistry Research 2016; 25: 1831-1841. doi: 10.1007/s00044-016-1626-7
  • 15. Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J et al. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. Journal of Medicinal Chemistry 2014; 57: 7073-7084. doi: 10.1021/jm5008648
  • 16. Fallarero A, Oinonen P, Gupta S, Blom P, Galkin A et al. Inhibition of acetylcholinesterase by coumarins: the case of coumarin 106. Pharmacological Research 2008; 58 (3-4): 215-221. doi: 10.1016/j.phrs.2008.08.001
  • 17. Shiah HS, Lee WS, Juang SH, Hong PC, Lung CC et al. Mitochondria-mediated and p53-associated apoptosis induced in human cancer cells by a novel selenophene derivative, D-501036. Biochemical Pharmacology 2007; 73: 610-619. doi: 10.1016/j.bcp.2006.10.019
  • 18. Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radical Biology and Medicine 2018; 127: 80-97. doi: 10.1016/j.freeradbiomed.2018.05.001
  • 19. Domínguez-Álvarez E, Gajdács M, Spengler G, Palop JA, Marć MA et al. Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorganic & Medicinal Chemistry Letters 2016; 26: 2821-2824. doi: 10.1016/j.bmcl.2016.04.064
  • 20. Wiles JA, Phadke AS, Bradbury BJ, Pucci MJ, Thanassi JA et al. Selenophene-containing inhibitors of type IIA bacterial topoisomerases. Journal of Medicinal Chemistry 2011; 54: 3418-3425. doi: 10.1021/jm2002124
  • 21. Bui CT, Flynn BL. Solid-phase synthesis of 2,3-disubstituted benzo[b]thiophenes and benzo[b]selenophenes. Journal of Combinatorial Chemistry 2006; 8: 163-167. doi: 10.1021/cc050066w
  • 22. Tùng DT, Villinger A, Langera P. Efficient synthesis of substituted selenophenes based on the first palladium(0)-catalyzed cross-coupling reactions of tetrabromoselenophene. Advanced Synthesis & Catalysis 2008; 350: 2109-2117. doi: 10.1002/adsc.200800316
  • 23. Domracheva I, Kanepe-Lapsa I, Jackevica L, Vasiljeva J, Arsenyan P et al. Selenopheno quinolinones and coumarins promote cancer cell apoptosis by ROS depletion and caspase-7 activation. Life Sciences 2017; 186: 92-101. doi: 10.1016/j.lfs.2017.08.011
  • 24. Müller-Schiffmann, A, Sticht H, Korth C. Hybrid compounds. BioDrugs 2012; 26 (1): 21-31.
  • 25. Waterborg, JH. The Lowry method for protein quantitation. Totowa, USA: Humana Press, 2019.
  • 26. Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radical Biology and Medicine 2018; 127: 80-97.
  • 27. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 1979; 95(2): 351-358.
  • 28. Beutler E, Kelly BM. The effect of sodium nitrite on red cell GSH. Experientia 1963; 19(2): 96-97.
  • 29. Jain PK, Joshi H. Coumarin: chemical and pharmacological profile. Journal of Applied Pharmaceutical Science 2012; 2(6): 236-240.
  • 30. Reddy NS, Mallireddigari MR, Cosenza S, Gumireddy K, Bell SC et al. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorganic & Medicinal Chemistry Letters 2004; 14(15): 4093-4097.
  • 31. Erşatır M, Yıldırım M, Giray ES. Carbostyril derivatives: Synthesis of novel carbostyril-3′-carbonitrilselenophene hybrid compounds and investigation of their antiproliferative properties on prostate and breast cancer. Synthetic Communications 2020; 1-12. doi: 10.1080/00397911.2020.1825744
  • 32. Myers RB, Parker M, Grizzle WE. The effects of coumarin and suramin on the growth of malignant renal and prostatic cell lines. Journal of Cancer Research and Clinical Oncology 1994; 120 (1): 11-13. doi: 10.1007/BF01377115
  • 33. Küpeli Akkol, E., Genç Y, Karpuz B, Sobarzo Sánchez, E, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020; 12 (7): 1959. doi: 10.3390/cancers12071959
  • 34. Umar S, Soni R, Durgapal SD, Soman S, Balakrishnan S. A synthetic coumarin derivative (4‐flourophenylacetamide‐acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS‐mediated p53 and AKT signaling pathways in A549 cells. Journal of Biochemical and Molecular Toxicology 2020; 34: e22553. doi: 10.1002/jbt.22553
  • 35. Hacioglu C, Kacar S, Kar F, Kanbak G, Sahinturk V. Concentration-dependent effects of zinc sulfate on DU-145 human prostate cancer cell line: oxidative, apoptotic, inflammatory, and morphological analyzes. Biological trace element research 2020; 195(2): 436-444.
  • 36. Kar F, Hacioglu C, Kacar S, Sahinturk V, Kanbak G. Betaine suppresses cell proliferation by increasing oxidative stress–mediated apoptosis and inflammation in DU-145 human prostate cancer cell line. Cell Stress and Chaperones 2019; 24(5): 871-881.
  • 37. Kim DH, Park KW, Chae IG, Kundu J, Kim EH et al. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Molecular Carcinogenesis 2016; 55: 1096-1110. doi: 10. 1002/mc.22353
  • 38. Magdalena LC, Tak YA. Glutathione and apoptosis. Free Radical Research 2008; 42(8): 689-706.