Novel flame retardant poly(thiourea-sulfone-imide)s for high temperature applications: synthesis and characterization

The synthesis and polymerization of a novel diamine monomer, 1,1-(sulfonylbis (4,1-phenylene)) bis (thiourea) (SPT), with various aromatic dianhydrides were carried out. In addition, the fabrication of poly(thiourea-sulfone-imide)s (PTSIs) with noble thermal properties and flame retardancy was conducted. The structures of SPT and polymers were characterized by FT-IR, 1H NMR, and 13C NMR spectroscopy along with elemental analysis. Crystallinity, organosolubility, inherent viscosity, and gel permeation chromatographic measurements were taken as well. The amorphous nature was exhibited by PTSIs containing C=S and --SO2- moieties in the backbone that were readily soluble in highly polar organic solvents. The inherent viscosities of PTSIs were 0.89--1.13 dL g-1 and molecular weights were 87,000--96,550 g mol-1, respectively. Their thermal stability was studied in terms of temperature at 10% weight loss, which ranged between 478 and 526 °C under inert atmosphere. Polyimides had a glass transition temperature around 253--268 °C depending on the dianhydrides used. The flame retardant properties of PTSIs were studied in terms of limiting oxygen index values and were measured in the range of 50--56.

Novel flame retardant poly(thiourea-sulfone-imide)s for high temperature applications: synthesis and characterization

The synthesis and polymerization of a novel diamine monomer, 1,1-(sulfonylbis (4,1-phenylene)) bis (thiourea) (SPT), with various aromatic dianhydrides were carried out. In addition, the fabrication of poly(thiourea-sulfone-imide)s (PTSIs) with noble thermal properties and flame retardancy was conducted. The structures of SPT and polymers were characterized by FT-IR, 1H NMR, and 13C NMR spectroscopy along with elemental analysis. Crystallinity, organosolubility, inherent viscosity, and gel permeation chromatographic measurements were taken as well. The amorphous nature was exhibited by PTSIs containing C=S and --SO2- moieties in the backbone that were readily soluble in highly polar organic solvents. The inherent viscosities of PTSIs were 0.89--1.13 dL g-1 and molecular weights were 87,000--96,550 g mol-1, respectively. Their thermal stability was studied in terms of temperature at 10% weight loss, which ranged between 478 and 526 °C under inert atmosphere. Polyimides had a glass transition temperature around 253--268 °C depending on the dianhydrides used. The flame retardant properties of PTSIs were studied in terms of limiting oxygen index values and were measured in the range of 50--56.

___

  • de Abajo, J.; de la Campa, J. G. In Progress in Polyimide Chemistry I; Ed. Kricheldorf, H. R. Springer, Germany, 1999, pp. 23–59.
  • Hariharan, R.; Bhuvana, S.; Sarojadevi, M. High Perform. Polym. 2006, 18, 163–184.
  • Madhra, M. K.; Salunke, A. K.; Banerjee, S.; Prabha, S. Macromol. Chem. Phys. 2002, 203, 1238–1248.
  • Reddy, D. S.; Chou, C-H.; Shu, C-F.; Lee, G-H. Polymer 2003, 44, 557–563.
  • Hariharan, R.; Bhuvana, S.; Sarojadevi, M. High Perform. Polym. 2006, 18, 163–184.
  • Liaw, D. J.; Liaw, B. Y.; Sillion, B.; Mercier, R.; Thiria, R.; Sekiguchi, H. Polym. Int. 1999, 48, 473–478.
  • Kong, C.; Zhang, Q.; Gu, X.; Chen, D. J. Macromol. Soci. A: Pure Appl. Chem. 2006, 43, 1825–1833.
  • Li, H. S.; Liu, J. G.; Rui, J. M.; Fan, L.; Yang, S. Y. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2665–74.
  • Yang, C. P.; Su, Y. Y.; Hasiao, F. Z. Polymer 2004, 45, 7529–38.
  • Kim, W. J.; Chang, J. Y. Mater. Lett. 2011, 65, 1388–1391.
  • Rosu, L.; Sava, I.; Rosu, D.; Appl. Surf. Sci. 2011, 257, 6996–7002.
  • Liaw, D. J.; Chang, F. C.; Leung, M. K.; Chou, M. Y.; Klaus, M. Macromolecules 2005, 38, 4024–9.
  • Liu, B.; Hu, W.; Matsumoto, T.; Jiang, Z.; Ando, S. J. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5766–74. Moy, T. M.; Deporter, C. D.; McGrath, J. E. Polymer 1993, 34, 819–24.
  • Xu, J.; He, C.; Chung, T. S. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2998–3001.
  • Zhang, H. B.; Wang, Z. V. Macromolecules 2000, 33, 4310–4312.
  • Reetz, M. T.; Kuhling, K. M.; Deege, A.; Hinrichs, H.; Belder, D. Angew Chem. Int. 2000, 39, 3891–3893.
  • Avalos, M.; Babiano, R.; Cintas, P.; Chavero, M. M.; Higes, F. J.; Jimenez, J. L.; Palacios, J. C.; Silvero, G. J. Org. Chem. 2000, 65, 8882–8892.
  • Liu, S.; Tang, C.; Ho, B.; Ankersen, M.; Stidsen, C. E.; Crider, A. M. J. Med. Chem. 1998, 41, 4693–4705.
  • Hari, A.; Miller, B. L. Org. Lett. 2000, 2, 3667–3670.
  • Michalska, Z. M.; Ostaszewski, B.; Strzelec, K. J. Organomet. Chem. 1995, 496, 19–26.
  • Yen, Y. P.; Ho, K. W. Tetrahedron Lett. 2006, 47, 7357–7361.
  • Kondo, S. I.; Sato, M. Tetrahedron 2006, 62, 4844–4850.
  • Ritter, J. A.; Bipler, J. P. Water Soci. Technol. 1992, 25, 165–172.
  • Zuo, G.; Muhammed, M. React. Polym. 1995, 24, 165–181.
  • Boutevin, B.; Hervaud, Y.; Mouledous, G. Polym. Bull. 1998, 41, 145–151.
  • Denga, Y.; Wanga, Y-Z.; Bana, D-M.; Liub, X-H.; Zhoua, Q. J. Anol. Appl. Pyrol. 2006, 76, 198–202.
  • Boinard, P.; Banks, W. M.; Pethrick, R. A. Polymer 2005, 46, 2218–2229.
  • Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Polymer 2009, 50, 6009–6018.
  • Nair, C. P. R.; Glouet, G.; Guilbert, Y.; Polym. Degrad. Stab. 1989, 26, 305–331.
  • Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S.; Jeng, R. J.; Perng, L. H. J. Appl. Polym. Sci. 1996, 61, 613–621.
  • Bhuvana, S.; Madhumathi, M.; Sarojadevi, M. Polym. Bull. 2006, 61, 61–72.
  • Liu, L.; Gao, Y.; Wang, F.; Wu, M. J. Appl. Polym. Sci. 2000, 75, 384–389.
  • Sivadhayanithy, M.; Ravikumar, L.; Rengaswamy, C. High Perform. Polym. 2007, 19, 62–77.
  • Ma, T.; Zhang, H.; Li, Y.; Yang, F.; Going, C.; Zhao, J. J. Flou. Chem. 2010, 131, 724–730.
  • Yu, G.; Liu, C.; Zhou, H.; Wang, J.; Lin, E.; Jian, X. Polymer 2009, 50, 4520–4528.
  • Kute, V.; Susanta, B.; Polym. Degrad. Stab. 2007, 103, 3025–3044.
  • Kausar, A.; Zulfiqar, S.; Ahmad, Z.; Sarwar, M. I. Polym. Degrad. Stab. 2010, 95, 1826–1833.
  • Takekoshi, T. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, USA, 1996.
  • Waris, G.; Siddiqi, H. M.; Bolte, M.; Hussain, R.; Akhtar, Z. Colloid Polym. Sci. 2013, DOI: 10. 1007/s00396-0132892Kausar, A.; Zulfiqar, S.; Ali, L.; Ishaq, M.; Sarwar, M. I. Polym. Int. 2010, 60, 564–570.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Biodegradability of degradable mulching film in a laboratory-controlled composting test

Xuemei ZHANG, Yaxi HUANG, Deqiang LI, Zicheng WEN, Baoxun SUI, Zhiyong LIU

Synthesis, characterization, and luminescence of zinc(II) and cadmium(II) coordination complexes: [Zn(phen)2(CH3COO)](ClO4), [Zn(bpy)2(ClO4)](ClO4), and [Cd(phen)2(NO3)2]

İbrahim KANİ, Mehmet KURTÇA

Comparative study of microwave-assisted and conventional synthesis of ibuprofen-based acyl hydrazone derivatives

Ayşe Uzgören BARAN

Synthesis of new N-[3-(Benzo[d]thiazol-2-yl)-4-methylthiazol-2(3H)-ylidene] substituted benzamides

Aamer SAEED, Hummera RAFIQUE

N-functionalized benzimidazol-2-ylidene silver complexes: synthesis, characterization, and antimicrobial studies

Yetkin GÖK, Senem AKKOÇ, Özlem Özeroğlu ÇELİKAL, İlknur ÖZDEMİR, Selami GÜNAL, Elif SAYIN

Synthesis of tetrakis(carboxyphenyl)porphyrin coated paramagnetic iron oxide nanoparticles via amino acid for photodegradation of methylene blue

Rahmatolah RAHIMI, Azadeh TADJARODI, Mina IMANI, Mahboubeh RABBANI, Samaneh Safalou MOGHADDAM, Hamed KERDARI

Syntheses, characterization, and antibacterial study of titanium complexes

Raj KAUSHAL, Nitesh KUMAR, Pamita AWASTHI, Kiran NEHRA

Synthesis, characterization, and fluorescence study of phthalhydrazidylazo derivative of an unsaturated diketone and its metal complexes

Radhika PALLIKKAVIL, Muhammed Basheer UMMATHUR, Krishnannair KRISHNANKUTTY

Determination of Pb(II) in natural water with dibromo-p-methyl-sulfonazo by the light-absorption ratio variation approach

Jie ZHANG

Asymmetric Henry reaction catalyzed by Cu(I)-based chiral amino alcohol complex

Tianhua SHEN, Quan QIN, Hang NI, Ting XIA, Xiaocong ZHOU, Funa CUI, Junqi LI, Deqiang RAN, Qingbao SONG