Nile Blue-hexacyanoferrate carbon paste modified electrode as an amperometric sensor for determination of hydrazine

The main problem associated with metal hexacyanoferrates (MHCFs) is their instability at high pH values. We synthesized a new Prussian Blue analogue, Nile-Blue hexacyanoferrate (NBHCF), that remains stable in 0.2 M KOH. A carbon paste (CPE) chemically modified electrode (ME) containing NBHCF was prepared as a stable electrochemical sensor for measuring hydrazine. A detailed characterization of the electrochemical and electrocatalytic behavior of NBHCF was performed using cyclic voltammetric, chronoamperometric, differential pulse voltammetric (DPV) and hydrodynamic amperometric methods. The NBHCF-modified electrode produced reproducible redox peaks and resulted in a linear increase in the oxidation signal of hydrazine with increasing concentration of hydrazine in the range of 0.1-6.0 mM (in hydrodynamic amperometry method (HDA)). The electrode detection limit was 40 m M and possessed a surface coverage of G = 2.0 \times 10-8 mol cm-2.

Nile Blue-hexacyanoferrate carbon paste modified electrode as an amperometric sensor for determination of hydrazine

The main problem associated with metal hexacyanoferrates (MHCFs) is their instability at high pH values. We synthesized a new Prussian Blue analogue, Nile-Blue hexacyanoferrate (NBHCF), that remains stable in 0.2 M KOH. A carbon paste (CPE) chemically modified electrode (ME) containing NBHCF was prepared as a stable electrochemical sensor for measuring hydrazine. A detailed characterization of the electrochemical and electrocatalytic behavior of NBHCF was performed using cyclic voltammetric, chronoamperometric, differential pulse voltammetric (DPV) and hydrodynamic amperometric methods. The NBHCF-modified electrode produced reproducible redox peaks and resulted in a linear increase in the oxidation signal of hydrazine with increasing concentration of hydrazine in the range of 0.1-6.0 mM (in hydrodynamic amperometry method (HDA)). The electrode detection limit was 40 m M and possessed a surface coverage of G = 2.0 \times 10-8 mol cm-2.

___

  • Conclusion This paper describes a novel Prussian Blue analogue, Nile-Blue hexacyanoferrate (NBHCF), that remains stable in 0.2 M KOH. Experimental results have shown that this NBHCF modiŞed electrode was stable in alkaline solutions and exhibited electrocatalytic activity for the oxidation of hydrazine. The detection limit of this sensor was 40 mM and hence it can be used as an amperometric sensor. The sensor was found to be stable with no loss of redox activity even after the prepared electrode was aged in air for 2 weeks. Neff, V. D. J. Electrochem. Soc. 1978, 125, 886-887.
  • Lin, M. S.; Tseng, T. F.; Shih, W. C. Analyst 1998 123, 159-163.
  • Fang, B.; Wei, Y.; Li, M.; Wang, G.; Zhang, W. Talanta 2007, 72, 1302-1306.
  • Lin, M. S.; Shih, W. C. Anal. Chim. Acta 1999, 381, 183-189.
  • Xu, F.; Gao, M.; Wang, L.; Zhou, T.; Jin, L.; Jin, J. Talanta 2002, 58, 427-432.
  • Pournaghi-Azar, M. H.; Sabzi, R. E. J. Solid State Electrochem. 2002, 6, 553-559.
  • Teixeira, M. F. S.; Segnini, A.; Moraes, F. C.; Marcolino-J´unior, L. H.; Fatibello-Filho, O.; Cavalheiro, E. T. G. J. Braz. Chem. Soc., 2003, 14, 316-321.
  • Sabzi, R. E.; Zare, S.; Farhadi, K.; Tabrizivand, G. J. Chin. Chem. Soc., 2005, 52, 1079-1084.
  • Marafon, E. P.; Lucho, A. M. S.; Francisco, M. S. P.; Landersb, R.; Gushikem, Y. J. Braz. Chem. Soc. 2006, 17, 1611.
  • Wu, P.; Shi, Y.; Cai, C. J. Solid State Electrochem. 2006, 10, 270-276.
  • Eftekhari, A. J. Electrochem. Soc. 2004, 151 :E297-E301.
  • Shi, Y.; Wu, P.; Du, P.; Cai, C. Acta Physico-Chimica Sinica 2006, 22, 1227-1233.
  • Tacconi, N. R. D.; Rajeshwar, K.; Lezna, R. O. J. Electroanal. Chem. 2001, 500, 270- 278.
  • Cataldi, T. R. I.; Benedetto, G. E. D.; Bianchini, A. J. Electroanal. Chem. 1998, 448, 111-117.
  • Liu, S. Q.; Chen, H. Y. J. Electroanal. Chem. 2002, 528, 190-195.
  • Eftekhari, A. Talanta 2001, 55, 395-402.
  • Prabakar, R. S. J.; Narayanan, S. S. J. Electroanal. Chem. 2008, 617, 111-115.
  • Sheng, Q. L.; Yu, H.; Zheng, J. B. Electrochimica Acta 2007, 52, 4506-4512.
  • Narayanan, S. S.; Scholz, F. Electroanalysis 1999, 11, 465-469.
  • Pournaghi-Azar, M. H.; Razmi-Nerbin, H. J. Electroanal. Chem.1998, 456, 83-90.
  • Pournaghi-Azar, M. H.; Dastangoo, H. J. Electroanal. Chem. 2002, 523, 26-33.
  • Liu, S.; Li, H.; Jiang, M.; Li, P. J. Electroanal. Chem. 1997, 426 , 27-30.
  • Paixao, T. R. L. C.; Bertotti, M. J. Pharma. Biomed. Anal. 2008, 46, 528-533.
  • Wu, P.; Cai, C. J. Electroanal. Chem. 2005, 576, 49-56.
  • Eftekhari, A. Anal. Lett. 2001, 34, 541-551.
  • Sheng, Q.; Yu, H.; Zheng, J. J. Electroanal. Chem. 2007, 606, 39-46.
  • Mishma, Y.; Motonaka, J.; Maruyama, K.; Ikeda, S. Anal. Chim. Acta 1998, 358, 291-296.
  • Sabzi, R. E.; Hassanzadeh, A.; Ghasemlu, K.; Heravi, P. J. Serb. Chem. Soc. 2007, 72, 993-1002.
  • Farhadi, K.; Kheiri, F.; Golzan, M. J. Braz. Chem. Soc. 2008, 19, 1405-1412.
  • Liu, C.; Dong, S. Electroanalysis 1997, 9, 838-842.
  • Roka, A.; Varga, I.; Inzelt, G. Electrochim. Acta 2006, 51, 6243-6250.
  • Joseph, J.; Gomathi, H.; Rao, G. P. J. Electroanal. Chem. 1997, 431, 231-235.
  • Liu, S. Q.; Chen, Y.; Chen, H.Y. J. Electroanal. Chem. 2001, 502, 197-203.
  • Tabrizivand, G.; Sabzi, R. E.; Farhadi, K. J. Solid State Electrochem. 2007, 11, 103- 108.
  • Alfaya, R. V. S.; Gushikem, Y.; Alfaya, A. A. S. J. Braz. Chem. Soc. 2000, 11, 281- 285.
  • Schessl, H. W. in: Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Vol. 13, Wiley Interscience, New York, 1995, p. 560.
  • Ojani, R.; Raoof, J. B.; Norouzi, B. Electroanalysis 2008, 20, 1378-1382.
  • Mazloum-Ardakani; Moosavizadeh, S. H.; Sadeghiane, A.; Mashhadizadeh, M. H.; Karimi, M. A. Turk. J. Chem. , 34, 229-240. Maleki, N.; Safavi, A.; Farjami, E.; Tajabadia, F. Anal. Chim. Acta 2008, 611, 151- 155.
  • Zhang, H.; Huang, J.; Hou, H.; Youa, T. Electroanalysis 2009, 21, 1869-1874.
  • Narayanan, S. S.; Scholz, F. Electroanalysis 1999, 11, 465-469.
  • Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Application, Wiley: New York, 2001.
  • Golabi, S. M.; Zare, H. R.; Hamzehloo, M. Michrochem. J. 2001, 69, 13-23.
  • Wang, B.; Cao, X. J. Electroanal. Chem. 1991, 309, 147-158.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Computational study on nitronium squarate - potential oxidizers for solid rocket propulsion?

Elif GÖKÇINAR, Thomas M. KLAPÖTKE

Comparative essential oil analysis of Geranium sylvaticum extracted by hydrodistillation and microwave distillation

Nuran KAHRİMAN, Gonca TOSUN, Hasan GENÇ, Nurettin YAYLI

Determination of trace element contents of Thymus species from Turkey

F. Zehra KÜÇÜKBAY, Ebru KUYUMCU

Determination of ceftriaxone, ceftizoxime, paracetamol, and diclofenac sodium by capillary zone electrophoresis in pharmaceutical formulations and in human blood serum

Amber SOLANGI, Saima MEMON, Arfana MALLAH, Najma MEMON

Computational study on nitronium squarate – potential oxidizers for solid rocket propulsion

Elif GÖKÇINAR, Thomas M. KLAPÖTKE

Synthesis and surfactant properties of N-acylation compounds derived from hydrolysis degradation products of N-(β-cianoethyl)-ε-caprolactam

Andreea BONDAREV

Reactions of 4-benzoyl-1,5-diphenyl-1H-pyrazole-3- carboxylic acid chloride with various hydroxylamines and carbazates

Elif KORKUSUZ, İsmail YILDIRIM

Synthesis and surfactant properties of N-acylation compounds derived from hydrolysis degradation products of N-(b-cianoethyl)-e-caprolactam

Andreea BONDAREV

Synthesis and characterization of Ba/MCM-41

Emine KAYA, Nuray OKTAR, Gürkan KARAKAŞ, Kırali MÜRTEZAOĞLU

Nile Blue-hexacyanoferrate carbon paste modified electrode as an amperometric sensor for determination of hydrazine

Reza Emamali SABZI, Elnaz MINAIE, Khalil FARHADI, Mir Maqsoud GOLZAN