Low Temperature CO Oxidation Kinetics over Activated Carbon Supported Pt-SnOx Catalysts

The kinetics of low temperature CO oxidation were studied over sequentially impregnated 1wt%Pt-0.25wt%SnOx supported on HNO3-oxidized activated carbon (AC3) using a wide range of CO (1-10 mol%) and O2 (1-4 mol%) concentrations. Intrinsic kinetic data were obtained in the initial rates region at 383 K in the absence and presence of 5-45 mol% H2 in the feed. A power-function rate expression with positive dependence on CO (0.96) and negative dependence on oxygen (--0.31) was obtained for the low temperature oxidation of CO. The effect of H2 on CO oxidation rates was also investigated under similar conditions.

Low Temperature CO Oxidation Kinetics over Activated Carbon Supported Pt-SnOx Catalysts

The kinetics of low temperature CO oxidation were studied over sequentially impregnated 1wt%Pt-0.25wt%SnOx supported on HNO3-oxidized activated carbon (AC3) using a wide range of CO (1-10 mol%) and O2 (1-4 mol%) concentrations. Intrinsic kinetic data were obtained in the initial rates region at 383 K in the absence and presence of 5-45 mol% H2 in the feed. A power-function rate expression with positive dependence on CO (0.96) and negative dependence on oxygen (--0.31) was obtained for the low temperature oxidation of CO. The effect of H2 on CO oxidation rates was also investigated under similar conditions.

___

  • D.L. Trimm and Z.˙I. ¨Onsan, Catal. Rev. Sci. Eng. 43, 31-84 (2001).
  • D.L. Trimm, Appl. Catal. A Gen. 296, 1-11 (2005).
  • R.J. Farrauto and C.H. Bartholomew, ”Fundamentals of Industrial Catalytic Processes”, Blackie Aca- demic and Professional, London, p. 654, 1999.
  • K. Grass and H.G. Lintz, J. Catal. 172, 446-52 (1997).
  • A.N. Akın, G. Kılaz, A.˙I. ˙I¸sli and Z.˙I. ¨Onsan, Chem. Eng. Sci. 56, 881-88 (2001).
  • A. Boulahouache, G. Kons, H.G. Lintz and P. Schulz, Appl. Catal. A: Gen. 91, 115-23 (1992).
  • A.E. Aksoylu, M.M.A. Freitas and J.L. Figueiredo, Appl. Catal. A Gen. 192, 29-42 (2000).
  • A.E. Aksoylu, M.M.A. Freitas and J.L. Figueiredo, Catal. Today 62, 337-46 (2000).
  • S¸. ¨Ozkara and A.E. Aksoylu, Appl. Catal. A Gen. 251, 75-83 (2003).
  • E. S¸im¸sek, S¸. ¨Ozkara, A.E. Aksoylu and Z.˙I. ¨Onsan, Appl. Catal. A: Gen. 316, 169-74 (2007).
  • M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Catal.. 171, 93-105 (1997).
  • M.M. Schubert, M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Power Sources 84, 175-82 (1999).
  • J. Arana, P. Ramirez de la Piscina, J. Llorca, J. Sales, N. Homs and J.-L.G. Fierro, Chem. Mater. 10, 42 (1998).
  • M.A. G¨ulmen , A. S¨umer and A.E. Aksoylu, Surface Science 600, 4909-21 (2006).
  • A. S¨umer, M.A. G¨ulmenand A.E. Aksoylu, Surface Science 600, 2026-39 (2006).
  • M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. H¨uttner, S. Hackenberg, H.A. Gasteiger and R.J. Behm, Phys. Chem. Chem. Phys. 3, 1123-31 (2001).
  • A.B. Mhadeshwar and D.G. Vlachos, J. Phys. Chem. B, 108, 15246-58 (2004).
  • A.B. Mhadeshwar and D.G. Vlachos, J. Catal. 234, 48-63 (2005).