First determination of some phenolic compounds and antimicrobial activities of Geranium ibericum subsp. jubatum: A plant endemic to Turkey

This paper includes the results of the first study about the phenolic characteristics and antimicrobial analyses of Geranium ibericum subsp. jubatum species found in Turkey. In the present work, the phenolic contents of different parts of the G. ibericum (flower, root, leaf) were determined with high-performance liquid chromatography (HPLC)-DAD (diode-array detector) and liquid chromatography (LC)-MS/MS (mass spectrometry). The following phenolic compounds were investigated: catechin, protocatechuic acid, gallic acid, ellagic acid, chlorogenic acid, 4-hydroxybenzaldehyde, p-coumaric acid, rutin, naringenin, kaempferol. Based on the results obtained, the roots and flowers of the plant are found to be very rich in ellagic acid (3473.57 mu g g(-1) dry plant) and catechin (2228.76 mu g g(-1) dry plant). The amount of chlorogenic acid (54.570 mu g g(-1) dry plant) is also high in the roots. The amounts of protocatechuic acid (122.5 mu g g(-1) dry plant) and gallic acid (725.34 mu g g(-1) dry plant) are high in the leaves. In addition, the total extract of G. ibericum obtained from leaf, flower, and root was tested against 6 gram-negative bacteria and Candida albicans. The G. ibericum extract was nearly as effective as commercial antibiotics at some concentrations (500-750 mu g mu L-1) for Acinetobacter baumannii, Klebsiella pneumonia, Proteus mirabilis, and Bacillus cereus.

___

  • Ay E., 2020, Journal of the Institute of Science and Technology, V10, P378, DOI 10.21597/jist.553329
  • Bala I, 2006, J PHARMACEUT BIOMED, V40, P206, DOI 10.1016/j.jpba.2005.07.006
  • Bastian F, 2018, MOLECULES, V23, DOI 10.3390/molecules23061346
  • Bautista M, 2015, AFR J TRADIT COMPLEM, V12, P96, DOI 10.4314/ajtcam.v12i4.15
  • Benzie IFF, 1996, ANAL BIOCHEM, V239, P70, DOI 10.1006/abio.1996.0292
  • Cheng HS, 2017, PHYTOCHEM REV, V16, P159, DOI 10.1007/s11101-016-9464-2
  • Deniz Ismail, 2013, Phytologia Balcanica, V19, P347
  • Elendran S, 2015, PHARM BIOL, V53, P1719, DOI 10.3109/13880209.2014.1003356
  • Ercil D, 2005, TURK J CHEM, V29, P437 .
  • Gayosso-De-Lucio JA, 2010, NAT PROD COMMUN, V5, P531
  • Giongo J. L., 2015, INT J PHARM PHARM SC, V7, P414
  • Gormez A, 2015, POL J MICROBIOL, V64, P121
  • Graca VC, 2020, CURR PHARM DESIGN, V26, P1838, DOI 10.2174/1381612826666200114110323
  • Graca VC, 2016, IND CROP PROD, V87, P363, DOI 10.1016/j.indcrop.2016.04.058
  • Guner A, 2012, TURKIYE BITKILER LIS .
  • Huseyinoglu R, 2017, BIOL DIVERS CONSERV, V10, P6
  • Karacelik AA, 2012, BIOACTIVE PHENOLIC C
  • Karacelik AA, 2015, FOOD CHEM, V175, P106, DOI 10.1016/j.foodchem.2014.11.085
  • Leucuta S, 2005, J LIQ CHROMATOGR R T, V28, P3109, DOI 10.1080/10826070500295211
  • LisBalchin M, 1996, LETT APPL MICROBIOL, V23, P205, DOI 10.1111/j.1472-765X.1996.tb00066.x
  • Lotito SB, 1998, FREE RADICAL BIO MED, V24, P435, DOI 10.1016/S0891-5849(97)00276-1
  • Menon LG, 1999, CANCER LETT, V141, P159, DOI 10.1016/S0304-3835(99)00098-1
  • Mojzer EB, 2016, MOLECULES, V21, DOI 10.3390/molecules21070901
  • Murzakhmetova M, 2008, PHYTOTHER RES, V22, P746, DOI 10.1002/ptr.2348
  • Palanisamy U, 2008, FOOD CHEM, V109, P54, DOI 10.1016/j.foodchem.2007.12.018
  • Radulovic N, 2011, TURK J CHEM, V35, P499, DOI 10.3906/kim-1002-43
  • Savci G, 2018, COMMAGENE J BIOL, V2, P28, DOI [10.31594/commagene.482198, DOI 10.31594/COMMAGENE.482198]
  • Sohretoglu D, 2017, IRAN J PHARM RES, V16, P178
  • Tetik F, 2013, J ETHNOPHARMACOL, V146, P331, DOI 10.1016/j.jep.2012.12.054
  • Vattem DA, 2005, J FOOD BIOCHEM, V29, P234, DOI 10.1111/j.1745-4514.2005.00031.x
  • Verma S, 2013, ENVIRON TOXICOL PHAR, V35, P473, DOI 10.1016/j.etap.2013.02.011
  • Wu N, 2010, J AGR FOOD CHEM, V58, P4737, DOI 10.1021/jf904593n
  • Wu QY, 2011, INT J MOL SCI, V12, P8740, DOI 10.3390/ijms12128740
  • Zeljkovic SC, 2017, NAT PROD COMMUN, V12, P273, DOI 10.1177/1934578X1701200234