Fabrication and biocompatibility assessment of polypyrrole/cobalt II metal-organic frameworks nanocomposite

Nowadays, metal-organic frameworks MOFs have emerged as promising tools for different biological applications and therefore, efforts are ongoing to develop more biocompatible MOFs-based nanocomposites. We aimed to fabricate some new conductive nanocomposites of polypyrrole and cobalt-MOF with different weight percentages PPy/x%Co-MOF usingthesolutionmixingmethodandcharacterizethemthroughFT-IR Fourier-transforminfrared , PXRD powder X-ray diffraction , SEM scanning electron microscope , and TEM transmission electron microscope techniques. The biocompatibility of nanocomposites was assessed by haemolytic, cytotoxic, and quantitative reverse transcription PCR qRT-PCR assays. FT-IR and PXRD results revealed that nanocomposites consisted of pure MOFs and PPy. Moreover, SEM results indicated their spherical morphology along with an average diameter of 190 nm. 3- 4,5-Dimethylthiazol-2-yl -2,5-diphenyltetrazolium bromide MTT assay showed a concentration, and percentagedependent cytotoxic effect of the nanocomposites on some cell lines including 3T3 fibroblasts, MCF-7, and J774.A1 macrophages. HaematologicaltoxicityofPPy/x%Co-MOFcompositeswaslessthan7%inmostconcentrations. Furthermore, PPy/x%Co-MOF composites did not show any significant effect on the expression of cyclooxygenase-2 COX-2 and inducible nitric oxide synthase iNOS genes. In sum, regarding the haemolytic, proinflammatory, and cytotoxic tests, prepared nanocomposite demonstrated the reasonable in vitro biocompatibility which may be considered as a hopeful platform for further investigations including clinical applications.

___

  • 1. Chidambaram A, Stylianou KC. Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers 2018; 5 (5): 979-998.
  • 2. Belmabkhout Y, Zhang Z, Adil K, Bhatt PM, Cadiau A et al. Hydrocarbon recovery using ultra-microporous fluorinated MOF platform with and without uncoordinated metal sites: I- structure properties relationships for C2H2/C2H4 and CO2/C2H2 separation. Chemical Engineering Journal 2019; 359: 32-36.
  • 3. Rojas-Buzo S, García-García P, Corma A. Zr-MOF-808@ MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors. Catalysis Science & Technology 2019; 9 (1): 146-156.
  • 4. Lazaro IA, Forgan RS. Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews 2019; 380: 230-259.
  • 5. Guo A, Durymanov M, Permyakova A, Sene S, Serre C et al. Metal organic framework (MOF) particles as potential bacteria-mimicking delivery systems for infectious diseases: characterization and cellular internalization in alveolar macrophages. Pharmaceutical Research 2019; 36 (4): 53.
  • 6. Wisser D, Wisser FM, Raschke S, Klein N, Leistner M et al. Biological chitin–MOF composites with hierarchical pore systems for air-filtration applications. Angewandte Chemie International Edition 2015; 54 (43): 12588-12591.
  • 7. Li H, Lv N, Li X, Liu B, Feng J et al. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 2017; 9 (22): 7454-7463.
  • 8. Zhong J, Kankala RK, Wang S-B, Chen A-Z. Recent advances in polymeric nanocomposites of metal-organic frameworks (MOFs). Polymers 2019;11 (10): 1627.
  • 9. Kim H-C, Mitra S, Veerana M, Lim J-S, Jeong H-R et al. Cobalt (II)-coordination polymers containing glutarates and bipyridyl ligands and their antifungal potential. Scientific Reports 2019; 9 (1): 1-13.
  • 10. Yang S, Peng L, Sun DT, Asgari M, Oveisi E et al. A new post-synthetic polymerization strategy makes metal– organic frameworks more stable. Chemical Science 2019; 10 (17): 4542-4549.
  • 11. Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nature Materials 2003; 2 (1): 19-24.
  • 12. Yu C, Zhu X, Wang C, Zhou Y, Jia X et al. A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. Nano Energy 2018; 53: 475-482.
  • 13. Hsieh H-C, Hsiow C-Y, Su Y-A, Liu Y-C, Chen W et al. Two-dimensional polythiophene homopolymer as promising hole transport material for high-performance perovskite solar cells. Journal of Power Sources 2019; 426: 55-60.
  • 14. Stejskal J, Hajná M, Kašpárková V, Humpolíček P, Zhigunov A et al. Purification of a conducting polymer, polyaniline, for biomedical applications. Synthetic Metals 2014; 195: 286-293.
  • 15. Soudan P, Lucas P, Ho HA, Jobin D, Breau L et al. Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. Journal of Materials Chemistry 2001; 11 (3): 773-782.
  • 16. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia 2014; 10 (6): 2341-2353.
  • 17. Jiao Y, Chen G, Chen D, Pei J, Hu Y. Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A 2017; 5 (45): 23744-23752.
  • 18. Xu X, Tang J, Qian H, Hou S, Bando Y et al. Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Applied Materials & Interfaces 2017; 9 (44): 38737- 38744.
  • 19. Chen G, Leng X, Luo J, You L, Qu C et al. In vitro toxicity study of a porous iron (III) metal-organic framework. Molecules 2019; 24 (7): 1211.
  • 20. Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today 2018; 11: 13-21.
  • 21. Zhu Y-D, Chen S-P, Zhao H, Yang Y, Chen X-Q et al. PPy@ MIL-100 nanoparticles as a pH-and near-IRirradiation-responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells. ACS Applied Materials & Interfaces 2016; 8 (50): 34209-34217.
  • 22. Zheng S, Li X, Yan B, Hu Q, Xu Y et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Advanced Energy Materials 2017; 7 (18): 1602733.
  • 23. Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews 2020; 49 (1): 301-331.
  • 24. Guo X, Zhang Y-Z, Zhang F, Li Q, Anjum DH et al. A novel strategy for the synthesis of highly stable ternary SiO x composites for Li-ion-battery anodes. Journal of Materials Chemistry A 2019; 7 (26): 15969-15974.
  • 25. Salabat A, Mirhoseini F, Mahdieh M, Saydi H. A novel nanotube-shaped polypyrrole–Pd composite prepared using reverse microemulsion polymerization and its evaluation as an antibacterial agent. New Journal of Chemistry 2015; 39 (5): 4109-4114.
  • 26. Qiu L, Zhang S, Zhang L, Sun M, Wang W. Preparation and enhanced electrochemical properties of nanosulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochimica Acta 2010; 55 (15): 4632-4636.
  • 27. Li H, Wan J, Ma Y, Wang Y, Chen X et al. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability. Journal of Hazardous Materials 2016; 318: 154-163.
  • 28. Wu Y, Song X, Li S, Zhang J, Yang X et al. 3D-monoclinic M–BTC MOF (M=Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Journal of Industrial and Engineering Chemistry 2018; 58: 296-303.
  • 29. Campello SL, Gentil G, Júnior SA, de Azevedo WM. Laser ablation: a new technique for the preparation of metal-organic frameworks Cu3(BTC)2(H2O)3. Materials Letters 2015; 148: 200-203.
  • 30. Hlekelele L, Nomadolo NE, Setshedi KZ, Mofokeng LE, Chetty A et al. Synthesis and characterization of polyaniline, polypyrrole and zero-valent iron-based materials for the adsorptive and oxidative removal of bisphenol-A from aqueous solution. RSC Advances 2019; 9 (25): 14531-14543.
  • 31. Zhang B, Xu Y, Zheng Y, Dai L, Zhang M et al. A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Research Letters 2011; 6: 431.
  • 32. Shamaei S, Abbasi AR, Noori N, Rafiee E, Azadbakht A. Ultrasound-assisted coating of silk yarn with nano-porous Co3(BTC)2•12H2O with iodine adsorption affinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013; 431: 66-72.
  • 33. Lee DY, Lim I, Shin CY, Patil SA, Lee W et al. Facile interfacial charge transfer across hole doped cobalt-based MOFs/TiO2 nano-hybrids making MOFs light harvesting active layers in solar cells. Journal of Materials Chemistry A 2015; 3 (45): 22669-22676.
  • 34. Luo Z, Fan S, Gu C, Liu W, Chen J et al. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Current Medicinal Chemistry 2019; 26 (18): 3341-3369.
  • 35. Samanta D, Meiser JL, Zare RN. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 2015; 7 (21): 9497-9504.
  • 36. Shrestha S, Shrestha BK, Kim JI, Ko SW, Park CH et al. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 2018; 136: 430-443.
  • 37. Nabipour Z, Nourbakhsh M, Baniasadi M. Synthesis, characterization and biocompatibility evaluation of hydroxyapatite-gelatin polyLactic acid ternary nanocomposite. Nanomedicine Journal 2016; 3 (2): 127-134.
  • 38. Vaitkuviene A, Kaseta V, Voronovic J, Ramanauskaite G, Biziuleviciene G et al. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. Journal of Hazardous Materials 2013; 250: 167-174.
  • 39. Gallis DFS, Butler KS, Rohwer LE, McBride AA, Vincent G et al. Biocompatible MOFs with high absolute quantum yield for bioimaging in the second near infrared window. CrystEngComm 2018; 20 (39): 5919-5924.
  • 40. Faust T. Nanomedicine: MOFs deliver. Nature Chemistry 2015; 7 (4): 270-271.
  • 41. Neisi Z, Ansari-Asl Z, Jafarinejad-Farsangi S, Tarzi ME, Sedaghat T et al. Synthesis, characterization and biocompatibility of polypyrrole/Cu (II) metal-organic framework nanocomposites. Colloids and Surfaces B: Biointerfaces 2019; 178:365-376.
  • 42. Shearer JD, Richards JR, Mills CD, Caldwell MD. Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. American Journal of Physiology-Endocrinology And Metabolism 1997; 272 (2): 181-190.
  • 43. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 2005; 310 (5756): 1966-1970
  • 44. Tan H, Liu C, Yan Y, Wu J. Simple preparation of crystal Co3(BTC)2•12H2O and its catalytic activity in CO oxidation reaction. Journal of Wuhan University of Technology-Materials Science Edition 2015; 30 (1): 71-75.
  • 45. Guo S, Zhu Y, Yan Y, Min Y, Fan J et al. (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. Journal of Power Sources 2016; 316: 176-182.
  • 46. Mirzamohammadi S, Mehrabani M, Tekiyehmaroof N, Sharifi A. Protective effect of 17β -estradiol on serum deprivation-induced apoptosis and oxidative stress in bone marrow-derived mesenchymal stem cells. Human & Experimental Toxicology 2016; 35 (3): 312-322.
  • 47. Raeiszadeh M, Esmaeili-Tarzi M, Bahrampour-Juybari K, Nematollahi-mahani S, Pardakhty A et al. Evaluation the effect of Myrtus communis L. extract on several underlying mechanisms involved in wound healing: an in vitro study. South African Journal of Botany 2018; 118: 144-150.
  • 48. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK et al. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Letters 2008; 8 (8): 2180-2187.