Electrorheological properties of suspensions prepared from poly (Li-tert-btyl methacrylate) ionomer
Electrorheological properties of suspensions prepared from poly (Li-tert-btyl methacrylate) ionomer
The synthesis, characterisation and partial hydrolysis of poly(tert-butylmethacrylate), (PTBMA), and the electrorheological (ER) properties of its suspensions were investigated. The polymer was syn-thesised by radical polymerisation and partially hydrolysed by para-toluenesulphonic acid monohydrate (PTSA.$H_2O$), and then converted to a lithium salt (PTBMA-Li) by washing with a $LiOH_{(aq)}$ solution. Prom particle size measurements, the average particle size of PTBMA-Li was determined to be 74 $mu$ m. Colloidal suspensions of ionomer were prepared in various insulating oils [silicone oil (SO), mineral oil (MO), threeoctylthreemellitate (TOTM) and dioctylphatalete "(DOP)] at a series of concentrations (c = 5-33 m/m, %). The sedimentation stabilities of these suspensions were determined at 20 °C and were observed to increase with decreasing suspension concentration. Maximum gravitational stability was observed as 32 days in SO at c = 5 m/m, %. Flow times of suspensions were measured under no applied electric field (E = 0 kV/mm) , and under an external electric field (E $neq$ 0 kV/mm) , and ER activity was determined. The highest flow time was found to be 32 s in SO at c = 33 m/m, %. Further, the effects of solid particle concentration, shear rate $(gamma)$, electric field strength, (E) addition of polar promoters and high temperature on the ER activities of colloidal suspensions were investigated. Excess shear stresses $(Deltatau)$ were determined to be 74 Pa under E = 1.0 kV/mm.
___
- 1. T.C. Hasley, Science, 25 (8), 761 (1992).
- 2. H. Block and J.P. Kelly, J. Phys. D: Appl. Phys., 21, 1661 (1988).
- 3. C.J. Gow and C.P. Zukoski, Adv. Colloid Interface Sci., 136, 105 (1989).
- 4. H.Q. Xie, J. Appl. Polym. Sci., 158, 951 (1995).
- 5. Z.P. Shulman, R.G. Gorodkin, E.V. Korobko and V.K. Gleb, J. Non-Newtonian Fluids Mechanics, 8, 29 (1981).
- 6. T. Hao, Adv. Colloid and Interface Sci., 97, 1 (2002).
- 7. R. Tao and G.D. Roy, Electrorheological Fluids: Mechanisms, Properties, Technology and Applications, Eds. R. Tao and G.D. Roy, World Scientific London, 1994, chapter 4.
- 8. W.M. Winslow, J. Appl. Phys., 20, 1137 (1949).
- 9. A.P. Gast and C.F. Zukoski, Adv. Colloid Int. Sci., 30,153 (1989).
- 10. Y. Otsubo, M. Sekine and S. Katayama, J. Rheol., 36, 479 (1992).
- 11. G.B. Thurston and E.B. Gaertner, J. Rheol., 35, 1327 (1991).
- 12. S.G. Kim, J.W. Kim, W.H. Jang, H.J. Choi and M.S. Jhon, Polymer, 42, 5005 (2001).
- 13. H. Block, J.P. Kelly, A. Qin and T. Watson, Langmiur, 35, 687 (1990).
- 14. H.J. Choi, M.S. Cho, M.S. Jhon, Int. J. Mod. Phys. B, 13, 1901 (1999).
- 15. J.H. Lee, M.S. Cho, H.J. Choi and M.S. Jhon, Colloid Polym. Sci., 73, 277 (1999).
- 16. D. Quadrat, J. Stejskal, P. Kratochvil, C. Klason, D. McQueen, J. Kubat and P. Saha, Synth. Met., 37, 97 (1998).
- 17. M.S. Cho, H.J. Choi and K. To, Macromol. Rapid Commun., 19, 271 (1998).
- 18. H.J. Choi, J.W. Kim and K. To, Synth Met., 101, 697 (1999).
- 19. J. Trlica, P. Saha, O. Quadrat and J. Stejskal, Eur. Poly. J., 36, 2313 (2000).
- 20. R. Bloodworth and E. Wendt, Int. J. Mod. Phys B., 10, 2951 (1996).
- 21. H.J. Choi, J.W. Kim, M.H. Noh, D.C. Lee and M.S. Jhon, J. Mater. Sci. Lett., 18, 1505, (1999).
- 22. J.W. Kim, H.J. Choi and M.S. Jhon, Macromol. Symp., 155, 229, (2000).
- 23. J.W. Kim, S.G. Kim, H.J. Choi and M.S. Jhon, Macromol. Rapid Commun. 20, 450 (1999).
- 24. B.H. Kim, J.H. Jung, J. Joo, J.W. Kim and H.J. Choi, J. Korean Phys. Soc. 36, 366 (2000).
- 25. H.Q. Xie, D. Tian, P. He and J. Guo, J. Appl. Polm. Sci., 68, 2169 (1998).
- 26. H.I. Unal and H. Yilmaz, J. Appl. Polym. Sci., 86, 1106 (2002).
- 27. M. Yavuz, H.I. Unal and Y. Yildirir; Turk. J. Chem., 25, 19 (2001).
- 28. M. Yavuz and H.I. Unal J. Appl. Polym. Sci., 91, 1822 (2004).
- 29. J.F. Watts and T.J.Carney, Powder Metallurgy-An Overview, The Institute of Materials, London UK, 28-81, (1991).
- 30. D. Sahin, B. Sari and H.I. Unal, Turk. J. Chem., 26, 113 (2002).
- 31. V.I. Bezruk, A.N. Lazarev, V.A. Malov and O.G. Usyarov, Coll. J., 34, 142 (1972).
- 32. S. Wu and J. Shen, J. Appl. Polym. Sci., 60, 2159 (1996).
- 33. V.I. Kordonsky, E.V. Korobko and T.G. Lazareva, J. Rheol., 35, 1427 (1991).
- 34. C. Gow and C.F. Zukoski, J. Colloid Interface Sci., 136, 175 (1990).
- 35. T. Durrschmidt and H. Hoffmann, Colloids and Surfaces, A: Physicochemical and Enginering Aspects,156, 257 (1999).
- 36. I.K. Yang and I.T. Huang, J. Polym Sci. Part B Polym. Phys., 35 (8), 1217 (1997).
- 37. A. Lengalova, V. Pavlinek, P. Saha, J. Stejskal and O. Quadrat, J. Colloid Interface Sci., 258, 174 (2003).
- 38. J.B. Yin and X.P. Zhao, J. Colloid Interface Sci. 257, 228 (2003).
- 39. D.J. Klingenberg and C.F. Zukoski, Langmiur, 6, 15 (1990).
- 40. Y. Xu and R. Liang, J. Rheol., 35, 1355 (1991).
- 41. G. Bossis, E. Lemaire, O. Volkova and H. Clercx, J. Rheol., 35, 687 (1997).
- 42. J.N. Foulc and D. Atten, Electrorheological Fluids: Mechanism, properties, technology and applications, Eds. R. Tao and G.R. Roy, World Scientific, London, (1994) p. 358-371.
- 43. M.S. Cho and H.J Choi, Korea-Australia Rheol. J., 12 (3,4) 151 (2000).
- 44. K.D. Weiss and T.G. Duclos, "Controllable Fluids: The temperature dependence of post-yield properties" in Electrorheological Fluids: Mechanisms, Properties, Technology and Applications, Eds. R. Tao and G.D. Roy, World Scientific, London, 1994, pp. 43-59.
- 45. K. Tanaka and Y. Orwa, Polymer, 30, 171 (1998).
- 46. H.P. Gavin, J. Non-Newtonian Fluid Mechanics, 71, 165 (1997).
- 47. H.J Choi, M.S. Cho, K.K. Kang and W.S. Ahn, Microporous and Mesoporous Materials, 39, 19 (2000).
- 48. D.L. Klass and T.W. Martinek, J. Apll. Phys., 38, 67 (1967).
- 49. D.L. Klass and T.W. Martinek, J. Apll. Phys., 38, 75 (1967).
- 50. U.Y. Treasurer, F.E. Filisko and L.H. Radzilowski, J. Rheol., 35, 1051 (1991).
- 51. P.J. Rankin and D.J. Klingenberg, J. Rheol., 42, 639 (1998).