Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder

Zinc borate is a boron-containing chemical material that is used to increase the flame retardancy of polymeric materials, dyes, cables, fabrics, carpets, and the internal parts of automobiles and planes. Commercially used zinc borate, which has the formula of 2ZnO· 3B2 O3· 7H2 O, has a particle size between 10 and 20 μm. However, recent studies have shown that nanosized flame retardants have more superior flame retardancy and less negative effects on mechanical properties than microsized flame retardants. Nanosized flame retardants disperse more homogeneously and even low quantities are sufficient to provide high flame resistance. In this study, nano zinc borate powder was synthesized by a wet chemical method and the effects of nonionic, anionic, and cationic surfactants on the particle size and morphology of the zinc borate particles were investigated. Chemical purity and physical structures of the synthesized zinc borate powder were analyzed by XRD, FTIR, TG-DTA, TEM, and Zetasizer. The analysis results showed that the zinc borate powder had a chemical formula of 2ZnO· 3B2 O3· 7H2 O. TEM and Zetasizer results indicated that the nano zinc borate powder, which had nanoscale particle size distribution with needle- and flake-like structures, was synthesized using nonionic, anionic, and cationic surfactants. Key words:

___

  • 1. Zheng Y, Tian Y, Ma H, Qu Y, Wang Z et al. Synthesis and performance study of zinc borate nanowhiskers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009; 339: 178-184. doi: 10.1016/j.colsurfa.2009.02.018
  • 2. Ting C, Jian-Cheng D, Long-Shuo W, Fan Y, Gang F. Synthesis of a new netlike nano zinc borate. Materials Letters 2008; 62 (14): 2057-2059. doi: 10.1016/j.matlet.2007.11.015
  • 3. Namvar F, Beshkar F, Salavati-Niasari M. Effect of surfactants and precipitation agents on the morphologies of Nd6MoO12 nanostructures for enhancing photocatalytic activity. Advanced Powder Technology 2018; 29 (3): 737-743. doi: 10.1016/j.apt.2017.12.015
  • 4. Tian Y, He Y, Yu L, Deng Y, Zheng Y et al. In situ and one-step synthesis of hydrophobic zinc borate nanoplatelets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008; 312 (2-3): 99-103. doi: 10.1016/j.colsurfa.2007.06.029
  • 5. Köytepe S, Vural S, Seckin T. Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials. Materials Research Bulletin 2009; 44 (2): 369-376. doi: 10.1016/j.materresbull.2008.05.012
  • 6. Ting C, Jian-Cheng D, Long-Shuo W, Gang F. Preparation and characterization of nano-zinc borate by a new method. Journal of Materials Processing Technology 2009; 209 (8): 4076-4079. doi: 10.1016/j.jmatprotec.2008.09.029
  • 7. Dong JX, Hu ZS. A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate. Tribology International 1998; 31 (5): 219-223. doi: 10.1016/S0301-679X(98)00017-6
  • 8. Baltaci B, Çakal GÖ, Bayram G, Eroğlu İ, Özkar S. Surfactant modified zinc borate synthesis and its effect on the properties of PET. Powder Technology 2013; 244: 38-44. doi: 10.1016/j.powtec.2013.04.006
  • 9. Li S, Long B, Wang Z, Tian Y, Zheng Y et al. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene. Journal of Solid State Chemistry 2010; 183 (4): 957-962. doi: 10.1016/j.jssc.2010.02.017
  • 10. Tian Y, Guo Y, Jiang M, Sheng Y, Hari B et al. Synthesis of hydrophobic zinc borate nanodiscs for lubrication. Materials Letters 2006; 60 (20): 2511-2515. doi: 10.1016/j.matlet.2006.01.108
  • 11. Hiroshi S, Hiroshi I, Satoshi T. Zinc Borate: Its Manufacturing Method and Its Application. JP2001192567, 2001.
  • 12. Nies NP, Beach L, Hulbert RW. Zinc Borate of Low Hydration and Method for Preparing Same. US Patent No: 3.549.316, 1970.
  • 13. Schubert DM. Process of Making Zinc Borate and Fire-Retarding Compositions Thereof. US Patent No: 5.342.553, 1994.
  • 14. Schubert DM. Zinc Borate. US Patent No: 5.472.644, 1995.
  • 15. Akgül Ö, Acarali NB, Tuğrul N, Derun EM and Pişkin S. X-Ray, thermal, FT-IR and morphological studies of zinc borate in presence of boric acid synthesized by ulexite. Periodico di Mineralogia 2014; 83 (1): 77-88. doi: 10.2451/2014PM0005
  • 16. Çakal GÖ. Production of fine zinc borate in industrial scale. Chemical Industry & Chemical Engineering Quarterly 2012; 18 (4): 547-553. doi: 10.2298/CICEQ120224031C
  • 17. Ersan AC, Yildirim M, Kıpçak AS, Tuğrul N. A novel synthesis of zinc borates from a zinc oxide precursor via ultrasonic irradiation. Acta Chimica Slovenica 2016; 63: 881-890. doi: 10.17344/acsi.2016.2842
  • 18. Gao YH, Liu ZH. Synthesis and thermochemistry of two zinc borates Zn 2 B6 O11·7H2 O and Zn 3 B10 O18·14H2 O. Thermochimica Acta 2009; 484: 27-31. doi: 10.1016/j.tca.2008.11.013
  • 19. Eltepe HE, Balköse D, Ülkü S. Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium. Industrial & Engineering Chemistry Research 2007; 46 (8): 2367-2371. doi: 10.1021/ie0610243
  • 20. Gönen M. Nanosized zinc borate production. PhD, İzmir Institute of Technology, İzmir, Turkey, 2009.
  • 21. Yi-Hong G, Zhi-Hong L. Synthesis and thermochemistry of two zinc borates, Zn 2 B6 O11·7H2 O and Zn 3 B10 O18·14H2 O. Thermochimica Acta 2009; 484 (1-2): 27-31. doi: 10.1016/j.tca.2008.11.013
  • 22. Kipcak AS, Senberber FT, Derun EM, Tugrul N, Piskin S. Characterization and thermal dehydration kinetics of zinc borates synthesized from zinc sulfate and zinc chloride. Research on Chemical Intermediates 2015; 41: 9129-9143. doi: 10.1007/s11164-015-1952-2
  • 23. Haghi AK, Balköse D, Thomas S. Applied Physical Chemistry with Multidisciplinary Approaches. Boca Raton, FL, USA: CRC Press, 2018.
  • 24. Sawai D, Anyashiki T, Nakamura K, Hisada N, Ono T et al. Ultradrawing above the static melting temperature of ultra-high molecular weight isotactic poly(1-butene) having low ductility in the crystalline state. Polymer 2007; 48 (1): 363-370. doi: 10.1016/j.polymer.2006.11.020
  • 25. Jin HJ, Lee BY, Kim MN, Yoon JS. Properties and biodegradation of poly(ethylene adipate) andpoly(butylene succinate) containing styrene glycol units. European Polymer Journal 2000; 36: 2693-2698. doi: 10.1016/S0014- 3057(00)00057-4
  • 26. Fernández-Berridi MJ, Martin-Guzmán G, Iruin JJ, Elorza JM. Determination of the interaction parameter χ of poly(ethylene oxide) by gas-liquid chromatography below the melting temperature. Polymer 1983; 24 (4): 417-422. doi: 10.1016/0032-3861(83)90027-7
  • 27. Ute K, Miyatake N, Hatada K. Glass transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13mer to 50mer. Polymer 1995; 36 (7): 1415-1419. doi: 10.1016/0032- 3861(95)95919-R
  • 28. Luijsterburg BJ, Jobse PS, Spoelstra AB, Goossens JGP. Solid-state drawing of post-consumer isotactic poly(propylene): Effect of melt filtration and carbon black on structural and mechanical properties. Waste Management 2016; 546: 53-61. doi: 10.1016/j.wasman.2016.04.029