Dielectric Behavior of the Catalyst Zeolite NaY

Zeolites are crystalline hydrated aluminosilicates of alkaline and alkaline earth metals. The basic zeolite structure is an anionic frame of Si and Al T-atoms, which are tetrahedral and coordinated with oxygen atoms. The electrical properties of zeolites are of enormous technical importance due to their manifold applications as solid catalysts. Zeolite NaY was used in this investigation. Zeolite NaY is a synthetic zeolite and it has a faujasite structure. The electrical conductivity, dielectric permittivity, and loss factor of Na ion exchanged zeolite NaY was carried out in the 104-106 Hz frequency region at room temperature and different water contents using an HP 4194A LF Impedance Analyzer. The results of this investigation are given and explained to be used for further catalysis studies. Dielectric properties of zeolites have enormous importance because of their manifold applications as solid catalysts. Conductivity and dielectric permittivity studies are utilized in the investigation of the necessary conditions for catalytic activity.

Dielectric Behavior of the Catalyst Zeolite NaY

Zeolites are crystalline hydrated aluminosilicates of alkaline and alkaline earth metals. The basic zeolite structure is an anionic frame of Si and Al T-atoms, which are tetrahedral and coordinated with oxygen atoms. The electrical properties of zeolites are of enormous technical importance due to their manifold applications as solid catalysts. Zeolite NaY was used in this investigation. Zeolite NaY is a synthetic zeolite and it has a faujasite structure. The electrical conductivity, dielectric permittivity, and loss factor of Na ion exchanged zeolite NaY was carried out in the 104-106 Hz frequency region at room temperature and different water contents using an HP 4194A LF Impedance Analyzer. The results of this investigation are given and explained to be used for further catalysis studies. Dielectric properties of zeolites have enormous importance because of their manifold applications as solid catalysts. Conductivity and dielectric permittivity studies are utilized in the investigation of the necessary conditions for catalytic activity.

___

  • D.W. Breck, “Zeolite Molecular Sieves”, John Wiley and Sons, 1974.
  • M.E. Davis and R.J. Davis, “Fundamentals of Chemical Reaction Engineering”, McGraw Hill, Boston, p. 166-170, 2003.
  • S. Chandrasekhar and P.N. Pramada, Ceramic International 27, 351-361 (2001).
  • M.B. Sayed, J. Ph ys. Ch em. Solids 53, 1041-1048 (1992).
  • K. Albertiand F. Fetting, Sensors and Actuators B 21, 39-50 (1994).
  • M. Urbiztondo, S. Irusta, R. Mallada, M.P. Pina and J. Santamaria, Desalination 200, 601-603 (2006).
  • P. Qiu, Y. Huang, R.A. Secco and P.S. Balog, Solid State Ionics 118, 281-285 (1999).
  • O. Schaf, H. Ghobarkar, F. Adolf and P. Knauth, Solid State Ionics 143, 433-444 (2001).
  • L. Matins, R.T. Boldo and D. Cardoso, Microporous and Mesoporous Materials 98, 166-173 (2007).
  • J.F. Haw, T. Xu, J.B. Nicholas and P.W. Goguen, Nature 389, 832-835 (1997).
  • A. Corma, Current Opinion in Solid State and Materials Science 2, 63-75 (1997).
  • M.J. Stephenson, S.M.Holmes and R.A.W. Dryfe, Angew. Chem. Int. Ed. 44, 3075-3078 (2005).
  • S.I. Al-Mayman and S.M. Al-Zahrani, Catalysis Letters 78, 331-337 (2002).
  • M.E. Franke and U. Simon, Solid State Ionics 118, 311-316 (1999).
  • M.E. Franke, U. Simon, F. Roessner and U. Ronald, Applied Catalysis A: General 202, 179-182 (2000).
  • U. Simon, U. Flesch, W. Maunz, R. M¨uller and C. Plog, Microporous and Mesoporous Materials 21, 116 (1998).
  • I. Mekkaway and M.M. Mohamed, Egypt. J. Sol. 25, 115- 123 (2002).
  • M. Carrier and K. Soga, Engineering Geology 53, 115-123 (1999).
  • S.O. Nelson and L.E. Stetson, J. Agric. Engng. Res. 21, 181-192 (1976).
  • J.C. Anderson, “Dielectrics”, pp. 43, Chapman and Hall Ltd. London, 1964.
  • P.D. Kaviratna, T.J. Pinnavaia and P.A. Schr¨oeder, J. Ph ys. Ch em. Solids 12, 1897- 1906 (1996).
  • M. Carrier and K.A. Soga, Engineering Geology 53, 115-123 (1999).
  • E. Izci, Key Engineering Materials Vols. 264-268, 1357-1360 (2004).
  • M.S. Venkatesh and G.S.V. Raghavan, Canadian Biosystems Engineering 4, 15-30 (2005).
  • P. Ctibor, J. Sedlacek, K. Neufuss, J. Dubsky and P. Chraska, Ceramics International 31, 315-321 (2005).
  • V. Krylov, “Catalysis by Non-Metals” Academic Press, New York, 1970.
  • B. Hanna and F.H. Khalil, Surface Technology 17, 61-68 (1982).
  • A. Abdoulaye, J.V. Zanchetta, F.Di Renzo, J.C. Giuntini, J. Vanderschueren and G. Chabanis, Microporous and Mesoporous Materials 34, 317-325 (2000).
  • A. Abdoulaye, S.Sh. Soulayman, G. Chabanis, J.C. Giuntini and J.V. Zanchetta, Microporous Materials , 63-68 (1997).
  • R. Li, Q. Tang, S. Yin and T. Sato, Fuel Processing Technology 87, 617-622 (2006).
  • K.H. McPhee, Ire Transactions on Component Parts 3-33 (1959).
  • A. Motori, F. Patuelli, A. Saccani, F. Andreola, F. Bondioli, C. Siligardi and A.M. Ferrari, J. Mater. Sci. , 4327-4333.
  • T. Ohgushiand S. Kataoka, Journal of Colloid and Interface Science 148, 148-154 (1991).
  • D.W. Breck, “Zeolites Molecular Sieves”, pp. 392-410, Robert E. Kriege Pub., Malabar, 1984.
  • Y. Wang, J.H. Zhu, J.M. Cao, Y. Chun and Q.H. Xu, Microporous and Mesoporous Materials 26, 184 (1998).
  • A.D. Kalogeras and I.M. Vassilikou, Diffus. Defect and Data A Diffus. Forum. 164, 1-36 (1998).
  • N. Petranovic and D. Minic, Ceramics International 22, 317-320 (1996).
  • M. Rehakova, A. Sopkova, M. Casciola and Z. Bastl, Solid State Ionics 66, 189-194 (1993).
  • A.A. Higazy and M.E. Kassem, J. Ph ys. Ch em. Solids 53, 549-554 (1992).
  • J. Wang, X. Wang and X. Wang, Sensors and Actuators B 108, 445-449 (2006).
  • J.M. Kalogeras, E. Vitoyianni, A. Vassilikou-dova and S. Bones, J. Phys. Chem. Solids 55, 545-557 (1994).
  • B. Morris, J. Phys. Chem. Solids 30, 89-101 (1969).
  • U. Simon and M.E. Franke, Dielectric Newsletter 1-8 (1999).
  • T.N. Rostovshchikova, V.V. Smirnov, S.A. Gurevich, V.M. Kozhevin, D.A. Yavsin, S.M. Nevskaya, S.A. Nikolaev and E.S. Lokteva, Catalysis Today 105, 344-349 (2005).