Development of 2-acetylpyridine-4-phenyl-3-thiosemicarbazone functionalized polymeric resin for the preconcentration of metal ions prior to their ultratrace determinations by MIS-FAAS

2-Acetylpyridine-4-phenyl-3-thiosemicarbazone (APPT) ligand was incorporated onto Amberlite XAD-2 resin through an azo spacer and characterized by FTIR spectroscopy, elemental analysis, TGA, and SEM analysis. The synthesized resin was used for the preconcentration of Pb(II), Zn(II), Co(II), Ni(II), Cu(II), and Cd(II) ions. The sorbed metal ions were eluted with 10 mL of 2.0 mol L-1 HCl and determined by microsample injection coupled flame atomic spectrometry (MIS-FAAS). The recoveries of studied metal ions were \ge 95.1 % with RSD \ge 4.0 % at optimum pH 8; resin amount, 300 mg; flow rates, 2.0 mL min-1 (of eluent) and 3.0 mL min-1 (sample solution). The limits of detection (LOD) and limits of quantifications (LOQ) of the studied metal ions were 0.11, 0.05, 0.07, 0.08, 0.09, and 0.03; and 0.37, 0.17, 0.21, 0.13, 0.31, and 0.10 m g L-1, respectively, with a preconcentration factor of 500 for the 6 studied metal ions. The total saturation capacity of the resin was 0.36, 1.20, 1.50, 1.61, 1.07, and 0.71 mmol g-1, respectively.

Development of 2-acetylpyridine-4-phenyl-3-thiosemicarbazone functionalized polymeric resin for the preconcentration of metal ions prior to their ultratrace determinations by MIS-FAAS

2-Acetylpyridine-4-phenyl-3-thiosemicarbazone (APPT) ligand was incorporated onto Amberlite XAD-2 resin through an azo spacer and characterized by FTIR spectroscopy, elemental analysis, TGA, and SEM analysis. The synthesized resin was used for the preconcentration of Pb(II), Zn(II), Co(II), Ni(II), Cu(II), and Cd(II) ions. The sorbed metal ions were eluted with 10 mL of 2.0 mol L-1 HCl and determined by microsample injection coupled flame atomic spectrometry (MIS-FAAS). The recoveries of studied metal ions were \ge 95.1 % with RSD \ge 4.0 % at optimum pH 8; resin amount, 300 mg; flow rates, 2.0 mL min-1 (of eluent) and 3.0 mL min-1 (sample solution). The limits of detection (LOD) and limits of quantifications (LOQ) of the studied metal ions were 0.11, 0.05, 0.07, 0.08, 0.09, and 0.03; and 0.37, 0.17, 0.21, 0.13, 0.31, and 0.10 m g L-1, respectively, with a preconcentration factor of 500 for the 6 studied metal ions. The total saturation capacity of the resin was 0.36, 1.20, 1.50, 1.61, 1.07, and 0.71 mmol g-1, respectively.

___

  • Hashim, M. A.; Soumyadeep, M.; Jaya, N. S.; Bhaskar, S. J. Environ. Manage. 2011, 92, 2355–2388.
  • Aminul, I.; Ahmad, A.; Mohammad, A. L. J. Appl. Polym. Sci. 2012, 123, 3448–3458.
  • Uzun, A.; Soylak, M.; El¸ci, L. Talanta 2001, 54, 97–202.
  • Ghaedi, M.; Niknam, K.; Taheri, K.; Hossainian, H.; Soylak, M. Food Chem. Toxicol. 2010, 48, 891–897.
  • Sadegh, K.; Nadia, N.; Mohammad, R.; Homayon, A. P. Microchem J. 2013, 106, 147–153.
  • Duran, C.; Bulut, V. N.; Gundo˘gdu A.; Ozdes; D.; Yıldırım, N.; Soylak, M.; Sent¨urk, H. B.; El¸ci, L. J. Hazard. Mater. 2009, 167, 294–299.
  • Divrikli, U.; Kartal, A. A.; Soylak, M.; El¸ci, L. J. Hazard. Mater. 2007, 145, 459–464.
  • Yong, G.; Bingjun, D.; Yongwen, L.; Xijun, C.; Shuangming, M.; Maozhong, T. Anal. Chim. Acta 2004, 504, 319–324.
  • Krishna, P. G.; Gladis, J. M.; Rambabu, U.; Rao, T. P.; Naidu, G. R. K. Talanta 2004, 63, 541–546.
  • El¸ci, L.; Saracoglu, S. Talanta 1998, 46, 305–1310.
  • Kubova, J.; Neveral, V.; Stresko, V. J. Anal. At. Spectrom. 1994, 9, 241–243.
  • Kovacheva, P.; Djingova, R. Anal. Chim. Acta 2002, 464, 7–13.
  • Nielsen, S. C.; Sturup, S.; Spliid, H.; Hansen, E. H. Talanta 1999, 49, 1027–1044.
  • Shukla, R.; Rao, G. N. Talanta 2002, 57, 633–639.
  • Singh, A. K.; Mehtab, S. Talanta 2008, 74, 806–814.
  • Ruhela, R.; Singh, K. K.; Tomar, B. S.; Sharma, J. N.; Kumar, M.; Hubli, R. C.; Suri, A. K. Sep. Puri. Tech. 2012, 99, 36–43.
  • Turan, S.; Tokalıoglu, S.; Sahan, A.; Soykan, C. React. Funct. Polym. 2012, 72, 722–728.
  • Korn, M. G.; Andrade, J. B.; de Jesus, D. S.; Lemos, V. A.; Bandeira, M. L. S. F.; dos Santos, W. N. L.; Bezerra, M. A.; Amorim, F. A. C.; Souza, A. S.; Ferreira, S. L. C. Talanta 2006, 69, 16–24.
  • Prabhakaran, D.; Subramanian, M. S. Talanta 2003, 59, 1227–1236.
  • C¸ ekic, S. D.; Filik, H.; Apak, R. Anal. Chim. Acta 2004, 505, 15–24.
  • Marisa, W.; Apichat, I.; Ponwason, E. J. Hazard. Mater. 2008, 154, 739–747.
  • Vinod, K. J.; Hiren, C. M.; Hrishikesh, S. G.; Disha, J. V. Talanta 2009, 79, 1331–1340.
  • Manjeet, K.; Rathore, D. P. S.; Singh, A. K. Analyst 2000, 125, 1221–1226.
  • Jain, V. K.; Sait, S. S.; Shrivastav, P.; Agarwal, Y. K. Talanta 1997, 45, 397–404.
  • Ferreira, S. L. C.; Brito, C. F.; Dantas, A. F.; Araujo, N. M. L.; Costa, A. C. S. Talanta 1999, 48, 1173–1177.
  • Tewari, P. K.; Singh, A. K. Analyst 2000, 125, 2350–2355.
  • Tewari, P. K.; Singh, A. K. Talanta 2001, 53, 823–833.
  • Lemos, V. A.; Baliza, P. X.; Yamaki, R. T.; Rocha, M. E.; Oliveira Alves, A. P. Talanta 2003, 61, 675–682.
  • Lemos, V. A.; Baliza, P. X. Talanta 2005, 67, 564–570.
  • Kumar, M.; Rathore, D. P. S.; Singh, A. K. Fresenius J. Anal. Chem. 2001, 370, 377–382.
  • Bommana, N. K.; Venkata, R. D. K.; Harinath, Y.; Seshaiah, Y.; Wang, M. C. J. Agric. Food Chem. 2011, 59, 11352–11358.
  • Ferreira, S. L. C.; Lemos, V. A.; Santelli, R. E.; Ganzarolli, E.; Curtius, A. J. Microchem. J. 2001, 68, 41–46.
  • Saxena, R.; Singh, A. K. Anal. Chim. Acta 1997, 340, 285–290.
  • Manjeet, K.; Rathore, D. P. S.; Singh, A. K. Talanta 2000, 51, 1187–1196.
  • Khuhawar, M. Y.; Memon, Z. P.; Lanjwani, S. N. Chromatographia 1995, 41, 36–37.
  • Benvidi, A.; Lanjwani, S. N.; Ding, Z. J. Electroanal. Chem. 2010, 641, 99–103.
  • Nagarjuna, R.; Vasudeva, R. MEJS 2012, 2, 70–83.
  • Francisco, W. S.; Andre, G. O.; Jefferson, P. R.; Morsyleide, F. R.; Keukeleire, D.; Nascimento, R. F. J. Environ. Manage. 2010, 91, 1634–1640.
  • Yongwen, L.; Xijun, C.; Yong, G., Bingjun, D.; Shuangming, M. Solvent Extr. Ion Exc. 2005, 23, 725–740.
  • Gopalan, V.; Jain, A. K.; Singh, A. K. Microchim. Acta 2005, 149, 213–221.
  • Gopalan, V.; Singh, A. K. Talanta 2005, 67, 187–194.
  • Gopalan, V.; Singh, A. K. Talanta 2007, 71, 282–287.
  • Kartal, S.; Ozdemir, I.; Tokalioglu, S.; Yilmaz, V. Separ. Sci. Technol. 2007, 42, 3199–3215.
  • Narin, I.; Soylak, M.; Kayakirilmaz, K.; El¸ci, L.; Dogan, M. Anal. Lett. 2003, 36, 641–658.
  • Islam, A.; Laskar, M. A.; Ahmad, A. Environ. Monit. Assess. 2013, 185, 2691–2704.
  • Cristofol, E.; Sanchez, R. F.; Cano-Pavon, J. M. Talanta 1991, 38, 445–448.
  • Baig, J. A.; Hol, A.; Akdogan, A.; Kartal, A. A.; Divrikli, U.; Kazi, T. G.; El¸ci, L. J. Anal. At. Spectrom. 2012, 27, 1509–1517.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Application of 3-aroyl-4(5)-arylimidazols as efficient ligands in Pd-catalyzed Heck reactions

Mojtaba AMINI, Seyedeh Motahhareh AMINI, Bagher EFTEKHARI-SIS, Ali KEIVANLOO

Antioxidant, anticholinesterase, and antimicrobial activities and fatty acid constituents of Achillea cappadocica Hausskn. et Bornm.

Abdulselam ERTAŞ, Mehmet BOĞA, Nesrin HAŞİMİ, Yeter YEŞİL, Ahmet Ceyhan GOREN, Gülaçtı TOPÇU, Ufuk KOLAK

Convenient synthesis of new polysubstituted isoindole-1,3-dione analogues

Ayşe TAN, Mustafa Zahrittin KAZANCIOĞLU, Derya AKTAŞ, Özlem GÜNDOĞDU, Ertan ŞAHİN, Nurhan HORASAN KİSHALI, Yunus KARA

Oxidation of hydrocarbons with tetra-n-butylammonium peroxy monosulfate catalyzed by β -tetrabromo-meso-tetrakis(4-methoxyphenyl)- and β -tetrabromo-meso-tetraphenylporphyrinatomanganese(III)

Saeed RAYATI, Saeed ZAKAVI, Hossein VALINEJAD

Selective CO methanation over CeO 2 ZrO 2 -composed NiO and Co 3 O 4 catalysts

Filiz DEREKAYA BALIKÇI, Derya ERMERGEN MERCAN

Selective CO methanation over CeO2--ZrO2-composed NiO and Co3O4 catalysts

Filiz BALIKÇI DEREKAYA, Derya MERCAN ERMERGEN

Poly(vinyl chloride) functionalization by aliphatic and aromatic amines: application to the extraction of some metal cations

Fayçel AMMARI, Faouzi MEGANEM

Synthesis, spectral characterisation, electrochemical, and fluorescence studies of biologically active novel Schiff base complexes derived from E-4-(2-hydroxy-3-methoxybenzlideneamino)-N-(pyrimidin-2-yl)benzenesulfonamide

Valarmathy GOVINDARAJ, Subbalakshmi RAMANATHAN

Oxidation of hydrocarbons with tetra-n-butylammonium peroxy monosulfate catalyzed by b-tetrabromo-meso-tetrakis(4-methoxyphenyl)- and b-tetrabromo-meso-tetraphenylporphyrinatomanganese(III)

Saeed RAYATI, Saeed ZAKAVI, Hossein VALINEJAD

Catalytic conversion of carbon dioxide into cyclic carbonates by Cu(II) and Ni(II) acetylacetonates anchored onto Siral 80

Senem COŞKUN, Zeynep TAŞÇI, Mahmut ULUSOY, Mürüvvet YURDAKOÇ