Design, synthesis, and antitumor evaluation of novel methylene moiety-tethered tetrahydroquinoline derivatives

Design, synthesis, and antitumor evaluation of novel methylene moiety-tethered tetrahydroquinoline derivatives

Novel methylene-tethered tetrahydroquinolines (THQs) and cyclopenta[b ]pyridines were synthesized by onepot multicomponent reactions of Mannich bases, enolizable ketones, and NH4 OAc in water by an environmentallyfriendly K-10 montmorillonite clay-catalyzed reaction. The cytotoxic activities of 1-(2-methyl-8-methylene-5,6,7,8- tetrahydroquinolin-3-yl)ethanone (9a), ethyl 2-methyl-8-methylene-5,6,7,8-tetrahydroquinoline-3 carboxylate (9b), and 1-(2-methyl-7-methylene-6,7-dihydro-5H -cyclopenta[ b ]pyridin-3-yl)ethanone (11a) were tested against rat glioblastoma (C6), human breast cancer (MCF-7), prostate cancer (PC3), neuroblastoma (SH-SY5Y), and mouse fibroblast (L929) cell lines in a concentration-dependent (50–300 µM) and time-dependent (24–72 h) manner and expressed as IC50 values. The results showed that compound 9a induced the lowest IC50 values in all cell lines ranging from 111 ±1.1 µM to 128 ±1.3 µM when compared to 9b and 11a after 72 h. As an evaluation of antibacterial properties, a swarming motility assay was performed with the Pseudomonas aeruginosa PA01 strain and compound 9a showed higher inhibition of swarming motility.

___

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians 2018; 68 (6): 394-424. doi: 10.3322/caac.21492
  • 2. Shankaraiah N, Jadala C, Nekkanti S, Senwar KR, Nagesh N et al. Design and synthesis of C3-tethered 1,2,3- triazolo-β -carboline derivatives: anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorganic Chemistry 2016; 64 (2): 42-50. doi: 0.1016/j.bioorg.2015.11.005
  • 3. Wan M, Xu L, Hua L, Li A, Li S et al. Synthesis and evaluation of novel isoxazolyl chalcones as potential anticancer agents. Bioorganic Chemistry 2014; 54 (6): 38-43. doi: 10.1016/j.bioorg.2014.03.004
  • 4. Gedawy EM, Kassab AE, El-Malah AA. Synthesis and anticancer activity of novel tetrahydroquinoline and tetrahydropyrimidoquinoline derivatives. Medicinal Chemistry Research 2015; 24 (9): 3387-3397. doi: 10.1007/s00044-015- 1388-7
  • 5. Ghorab MM, Ragab FA, Heiba HI, Arafa RK, El-Hossary EM. Docking study, in vitro anticancer screening and radiosensitizing evaluation of some new fluorine-containing quinoline and pyrimidoquinoline derivatives bearing a sulfonamide moiety. Medicinal Chemistry Research 2011; 20 (3): 388-400. doi: 10.1007/s00044-010-9332-3
  • 6. Rano T, Kuo GH. Improved asymmetric synthesis of 3,4-dihydro-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3- (trifluoromethoxy)phenyl]-alpha-(trifluoromethyl)-1(2H)-quinolineethanol, a potent cholesteryl ester transfer protein inhibitor. Organic Letters 2009; 11 (13): 2812-2815. doi: 10.1021/ol900639j
  • 7. Rudenko DA, Shavrina TV, Shurov SN, Zykova SS. Synthesis and antioxidant activity of tricyclic compounds containing a 5,6,7,8-tetrahydroquinoline moiety. Pharmaceutical Chemistry Journal 2014; 48 (2): 100-103. doi: 10.1007/s11094-014-1057-z
  • 8. Sridharan V, Suryavanshi PA, Menéndez JC. Advances in the chemistry of tetrahydroquinolines. Chemical Reviews 2011; 111 (11): 7157-7259. doi: 10.1021/cr100307m
  • 9. Su DS, Lim JJ, Tinney E, Wan BL, Young MB et al. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants. Bioorganic and Medicinal Chemistry Letters 2009; 19 (17): 5119-5123. doi: 10.1016/j.bmcl.2009.07.031
  • 10. Gutiérrez M, Carmona U, Vallejos G, Astudillo L. Antifungal activity of tetrahydroquinolines against some phytopathogenic fungi. Zeitschrift für Naturforschung Section C Journal of Biosciences 2012; 67 (11): 551-556. doi: 10.5560/ZNC.2012.67c0551
  • 11. Jo H, Choi M, Kumar AS, Jung Y, Kim S et al. Development of novel 1,2,3,4-tetrahydroquinoline scaffolds as potent NF-κB inhibitors and cytotoxic agents. ACS Medicinal Chemistry Letters 2016; 7 (4): 385-390. doi: 10.1021/acsmedchemlett.6b00004
  • 12. Sabale PM, Patel P, Kaur P. 1,2,3,4-Tetrahydroquinoline derivatives and its significance in medicinal chemistry. Asian Journal of Research in Chemistry 2013; 6 (6): 599-610.
  • 13. Roach SL, Higuchi RI, Adams ME, Liu Y, Karanewsky DS et al. Discovery of nonsteroidal glucocorticoid receptor ligands based on 6-indole-1,2,3,4-tetrahydroquinolines. Bioorganic and Medicinal Chemistry Letters 2008; 18 (12): 3504-3508. doi: 10.1016/j.bmcl.2008.05.029
  • 14. Ogawa H, Yamashita H, Kondo K, Yamamura Y, Miyamoto H et al. Orally active, nonpeptide vasopressin V2 receptor antagonists:? a novel series of 1-[4-(benzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzazepines and related compounds. Journal of Medicinal Chemistry 1996; 39 (18): 3547-3555. doi: 10.1021/jm960133o
  • 15. Wang XF, Wang SB, Ohkoshi E, Wang LT, Hamel E et al. N-Aryl-6-methoxy-1,2,3,4-tetrahydroquinolines: a novel class of antitumor agents targeting the colchicine site on tubulin. European Journal of Medicinal Chemistry 2013; 67 (1): 196-207. doi: 10.1016/j.ejmech.2013.06.041
  • 16. Abd El-Salam OI, Abou El Ella DA, Ismail NSM, Abdullah M. Synthesis, docking studies and anti-inflammatory activity of some 2-amino-5,6,7,8-tetrahydroquinoline-3-carbonitriles and related compounds. Pharmazie 2009; 64 (3): 147-155. doi: 10.1691/ph.2009.8703
  • 17. Calhoun W, Carlson RP, Crossley R, Datko LJ, Dietrich S et al. Synthesis and antiinflammatory activity of certain 5,6,7,8-tetrahydroquinolines and related compounds. Journal of Medicinal Chemistry 1995; 38 (9): 1473-1481. doi: 10.1021/jm00009a008
  • 18. Yu GM, Mardanova LG, Kolla VE, Konshin ME. Synthesis, antiinflammtory and analgesic activities of 2- arylamino-5,6,7,8-tetrahydroquinoline-3-carboxamides. Pharmaceutical Chemistry Journal 1988; 22 (7): 554-556. doi: 10.1007/BF00763528
  • 19. Zhang C, Hou T, Feng Z, Li Y. Structure-based development of antagonists for chemokine receptor CXCR4. Current Computer-Aided Drug Design 2012; 9 (1): 60-75. doi: 10.1126/science.1194396
  • 20. Ghorab MM, Ragab FA, Hamed MM. Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety. European Journal of Medicinal Chemistry 2009; 44 (10): 4211-4217. doi: 10.1016/j.ejmech.2009.05.017
  • 21. Jirgensons A, Parsons C, Graham R, Jounzeme I, Kalvinsh I et al. Preparation of tetrahydroquinolinones and their use as antagonistts of Danysz Metabotropic glutamate receptors. Us Patent. US20050197361A1, 2005.
  • 22. Faidallah HM, Saqer AA, Alamry KA, Khan KA, Asiri AM. Synthesis and biological evaluation of some novel tetrahydroquinolines as anticancer and antimicrobial agents. Journal of Enzyme Inhibition and Medicinal Chemistry 2014; 29 (3): 367-378. doi: 10.3109/14756366.2013.787421
  • 23. Beattie DE, Crossley R, Curran AC, Dixon GT, Hill DG et al. 5,6,7,8-Tetrahydroquinolines. 4. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinenitriles and -thioamides. Journal of Medicinal Chemistry 1977; 20 (5): 714-718. doi: 10.1021/jm00215a019
  • 24. Curran ACW, Crossley R, Hill DG. 8-amino-5,6,7,8-tetrahydroquinoline derivatives. US Patent 4011229 A, 1977.
  • 25. Smith HW. Use of 5,6,7,8-tetrahydroquinolines and 5,6-dihydropyrindines as leukotriene and lipoxygenase inhibitors and the novel 3-substituted compounds therein. US Patent 4576949 A, 1984.
  • 26. Smith HW. 5,6,7,8-Tetrahydroquinolines and 5,6-dihydropyrindines and their therapeutic use. Patent EP 0161867 A2, 1985.
  • 27. Hanashalshahaby EHA, Unaleroglu C. Mannich bases as enone precursors for water-mediated efficient synthesis of 2,3,6-trisubstituted pyridines and 5,6,7,8-tetrahydroquinolines. ACS Combinatorial Science 2015; 17 (6): 374-380. doi: 10.1021/acscombsci.5b00046
  • 28. Mauli R, Ringold HJ, Djerassi C. Steroids. CXLV.1 2-Methylandrostane derivatives. Demonstration of boat form in the bromination of 2α-methyl-androstan-17β -ol-3-one. Journal of American Chemistry Society 1960; 82 (20): 5494-5500. doi: 10.1021/ja01505a045
  • 29. Roth HJ, Schwenke C, Dvorak G. Acetolyse des 2-Piperidinomethyl-cyclopentanons. 6. Mitt.: Acetolyse von Mannich-Basen. Archiv der Pharmazie (Weinheim) 1965; 298 (5): 326-335. doi: 10.1002/ardp.19652980510
  • 30. Blicke FF, McCarty FJ. Disubstitution of cycloalkanones in the Mannich reaction. Journal of Organic Chemistry 1959; 24 (8): 1069-1076. doi: 10.1021/jo01090a009
  • 31. Garipcan B, Odabas S, Demirel G, Burger J, Nonnenmann SS et al. In vitro biocompatibility of n-type and undoped silicon nanowires. Advanced Engineering Materials 2011; 13 (2): 3-9. doi: 10.1002/adem.200980045
  • 32. Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM et al. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells. Drug Design, Development and Therapy 2015; 9: 6191-6201. doi: 10.2147/DDDT.S87064
  • 33. Huang TC, Lee JF, Chen JY. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Marine Drugs 2011; 9 (10): 1995-2009. doi: 10.3390/md9101995
  • 34. Breu A, Rosenmeier K, Kujat R, Angele P, Zink W. The cytotoxicity of bupivacaine, ropivacaine, and mepivacaine on human chondrocytes and cartilage. Anesthesia and Analgesia 2013; 117 (2): 514-522. doi: 10.1213/ANE.0b013e31829481ed
  • 35. Hatano H, Takekawa F, Hashimoto K, Ishihara M, Kawase M et al. Tumor-specific cytotoxic activity of 1,2,3,4- tetrahydroisoquinoline derivatives against human oral squamous cell carcinoma cell lines. Anticancer Research 2009; 29 (8): 3079-3086.
  • 36. Saitoh T, Abe K, Ishikawa M, Nakatani M, Shimazu S et al. Synthesis and in vitro cytotoxicity of 1,2,3,4- tetrahydroisoquinoline derivatives. European Journal of Medicinal Chemistry 2006; 41 (2): 241-252. doi: 10.1016/j.ejmech.2005.11.003
  • 37. Ishihara M, Hatano H, Kawase M, Sakagami H. Estimation of relationship between the structure of 1,2,3,4- tetrahydroisoquinoline derivatives determined by a semiempirical molecular-orbital method and their cytotoxicity. Anticancer Research 2009; 29 (6): 2265-2271.
  • 38. Śliwka L, Wiktorska K, Suchocki P, Milczarek M, Mielczarek S et al. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One 2016; 11 (5): e0155772. doi: 10.1371/journal.pone.0155772
  • 39. Varghese AC, Fischer-Hammadeh C, Hammadeh ME. Acridine orange test for assessment of human sperm DNA integrity. In: Zini A, Agarwal A (editors). Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction. New York, NY, USA: Springer, 2011, pp. 189-199.
  • 40. Yang J, Yang S, Zhou S, Lu D, Ji L et al. Synthesis, anti-cancer evaluation of benzenesulfonamide derivatives as potent tubulin-targeting agents. European Journal of Medicinal Chemistry 2016 122 (10): 488-496. doi: 10.1016/j.ejmech.2016.07.002
  • 41. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Science of the USA 2000; 97 (9): 4885-4890. doi: 10.1073/pnas.060030097
  • 42. Ha DG, Kuchma SL, O’Toole GA. Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods in Molecular Biology 2014; 1149: 67-72. doi: 10.1007/978-1-4939-0473-0_7
  • 43. Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT et al. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Scientific Reports 2017; 7 (1): 1-16. doi: 10.1038/s41598-017-10997-5
  • 44. Rosselli S, Bruno M, Raimondo FM, Spadaro V, Varol M et al. Cytotoxic effect of eudesmanolides isolated from flowers of Tanacetum vulgare ssp. siculum. Molecules 2012; 17 (7): 8186-8195. doi: 10.3390/molecules17078186