Coumarin-based benzilmonohydrazone as a new proton-sensitive fluorescence dye: synthesis and investigation of photophysical and acidochromic properties

Coumarin-based benzilmonohydrazone as a new proton-sensitive fluorescence dye: synthesis and investigation of photophysical and acidochromic properties

Coumarin-based chromogenic and fluorogenic dye 4 was designed and synthesized. The photophysicalproperties of 4 were determined in solvents with different polarities. Protonation affinity was determined by adding trifluoroacetic acid (TFA) to a dichloromethane solution of dye 4 utilizing the UV-Vis and fluorescence titration methods. The protonation region was investigated by using the 1 H NMR method. Additionally, DFT and TDDFT studies were performed to support the structural and absorption spectral properties of 4.

___

  • 1. Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Manffez R et al. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews 2013; 42: 3489-3613. doi: 10.1039/C3CS35429F
  • 2. Klymchenko AS. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Accounts of Chemical Research 2017; 50 (2): 366-375. doi: 10.1021/acs.accounts.6b00517
  • 3. Guo Z, Zhu W, Tian H. Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors. Chemical Communications 2012; 48 (49): 6073-6084. doi: 10.1039/C2CC31581E
  • 4. Kim TI, Hwang B, Bouffard J, Kim Y. Instantaneous colorimetric and fluorogenic detection of phosgene with a meso-oxime-BODIPY. Analytical Chemistry 2017; 89 (23): 12837-12842. doi: 10.1021/acs.analchem.7b03316
  • 5. Liu XD, Xu Y, Sun R, Xu YJ, Lu JM et al. A coumarin–indole-based near-infrared ratiometric pH probe for intracellular fluorescence imaging. Analyst 2013; 138 (21): 6542-6550. doi: 10.1039/C3AN01033C
  • 6. Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chemical Reviews 2014; 114: 590-659. doi: 10.1021/cr300508p
  • 7. Shao J, Lin H, Lin H. Rational design of a colorimetric and ratiometric fluorescent chemosensor based on intramolecular charge transfer (ICT). Talanta 2008: 77 (1): 273-277. doi: 10.1016/j.talanta.2008.06.035
  • 8. Zhang T, Sheng L, Liu J, Ju L, Li J et al. Photoinduced proton transfer between photoacid and pH-sensitive dyes: influence factors and application for visible-light-responsive rewritable paper. Advanced Functional Materials 2018; 28 (16): 1705532. doi: 10.1002/adfm.201705532
  • 9. Han JY, Burgess K. Fluorescent indicators for intracellular pH. Chemical Reviews 2010; 110: 2709-2728. doi: 10.1021/cr900249z
  • 10. Teoli F, Lucioli S, Nota P, Frattarelli A, Matteocci F et al. Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits. Journal of Photochemistry and Photobiology A: Chemistry 2016; 316: 24-30. doi: 10.1016/j.jphotochem.2015.10.009
  • 11. Plutino MR, Guido E, Colleoni C, Rosace G. Effect of GPTMS functionalization on the improvement of the pHsensitive methyl red photostability. Sensors and Actuators B: Chemical 2017; 238: 281-291. doi: 10.1016/j.snb.2016.07.050
  • 12. Li H, Cai L, Chen Z. Advances in Chemical Sensors. Rijeka, Croatia: InTech, 2012.
  • 13. Goswami S, Das AK, Maity S. ‘PET’ vs. ‘push–pull’ induced ICT: a remarkable coumarinyl-appended pyrimidine based naked eye colorimetric and fluorimetric sensor for the detection of Hg 2+ ions in aqueous media with test trips. Dalton Transactions 2013; 42 (46): 16259-16263. doi: 10.1039/C3DT52252K
  • 14. Babür B, Seferoğlu N, Öcal M, Sonugur G, Akbulut H et al. A novel fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol detection. Tetrahedron 2016; 72 (30): 4498-4502. doi: 10.1016/j.tet.2016.06.008
  • 15. Aydıner B, Seferoğlu Z. Proton sensitive functional organic fluorescent dyes based on coumarin-imidazo[1,2- a]pyrimidine; syntheses, photophysical properties, and investigation of protonation ability. European Journal of Organic Chemistry 2018; 43: 5921-5934?. doi: 10.1002/ejoc.201800594
  • 16. Chemchem M, Yahaya I, Aydıner B, Seferoğlu N, Doluca O et al. A novel and synthetically facile coumarinthiophene-derived Schiff base for selective fluorescent detection of cyanide anions in aqueous solution: synthesis, anion interactions, theoretical study and DNA-binding properties. Tetrahedron 2018; 76 (48): 6897-6906. doi: 10.1016/j.tet.2018.10.008
  • 17. Chen Q, Wu N, Liu Y, Li X, Liu B. Twisted coumarin dyes for dye-sensitized solar cells with high photovoltage: adjustment of optical, electrochemical, and photovoltaic properties by the molecular structure. RSC Advances 2016; 6 (91): 87969-87977.
  • 18. Liu X, Cole J M, Waddell PG, Lin TC, Radia J et al. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A 2011; 116 (1): 727-737. doi: 10.1039/C6RA17930D
  • 19. Demchenko AP. Introduction to Fluorescence Sensing. Berlin, Germany: Springer Science & Business Media, 2008.
  • 20. Sheng R, Wang P, Liu W, Wu X, Wu S. A new colorimetric chemosensor for Hg 2+ based on coumarin azine derivative. Sensors and Actuators B: Chemical 2008; 128 (2): 507-511. doi: 10.1016/j.snb.2007.07.069
  • 21. Wieland M, Seichter W, Schwarzer A, Weber E. Influence of different aryl substitution on the crystal structures of benzil monohydrazone and dibenzil azine parent compounds. Structural Chemistry 2011; 22 (6): 1267. doi: 10.1007/s11224-011-9817-9
  • 22. Raju BB, Varadarajan TS. Substituent and solvent effects on the twisted intramolecular charge transfer of three new 7-(diethylamino)coumarin-3-aldehyde derivatives. Journal of Physical Chemistry 1994; 98: 8903-8905. doi: 10.1021/j100087a014.
  • 23. Satpati AK, Kumbhakar M, Nath S, Pal H. Photophysical properties of coumarin-7 dye: Role of twisted intramolecular charge transfer state in high polarity protic solvents. Photochemistry and Photobiology 2009; 85: 119-129. doi: 10.1111/j.1751-1097.2008.00405.x.
  • 24. Yoshino J, Kano N, Kawashima T. Fluorescent azobenzenes and aromatic aldimines featuring an N–B interaction. Dalton Transactions 2013; 42 (45): 15826-15834. doi: 10.1039/C3DT51689J
  • 25. Romero EL, D’Vries RF, Zuluaga F, Chaur MN. Multiple dynamics of hydrazone based compounds. Journal of the Brazilian Chemical Society 2015; 26 (6): 1265-1273. doi: 10.5935/0103-5053.20150092
  • 26. Liu X, Cole JM, Waddell PG, Lin TC, Radia J et al. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A 2012; 116: 727-737. doi: 10.1021/jp209925y.
  • 27. Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters 1996; 225: 327-335. doi: 10.1016/0009-2614(96)00349-1
  • 28. Adamo C, Jacquemin D. The calculations of excited-state properties with time-dependent density functional theory. Chemical Society Reviews 2013; 42: 845-856. doi: 10.1039/C2CS35394F
  • 29. Frisc MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09 (Revision C.01). Wallingford, CT, USA: Gaussian Inc., 2010.