Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling

Due to environmental concerns, increasing attention has been focused on the application and preparation of biobased polymers and their blends. In this study, cellulose, the most spread biopolymer on Earth, was used in the preparation of novel cotton/polypropylene-Au and cotton/polyethylene-Au nanocomposites via a green mechanochemical approach. First, mechanoradicals were generated by ball milling of the cotton and thermoplastics under cryo conditions, and then, these radicals were used in the reduction of Au ions to Au nanoparticles (Au NPs). Nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The application of mechanochemistry in obtaining the cotton/thermoplastic blends allowed homogenous and fine blending of the samples and in addition, excluded the usage of toxic solvents. Since Au NPs exhibit a wide range of applications, e.g., in catalysis, cotton/thermoplastic-Au nanocomposites were used to catalyze the reduction reaction of 4-nitrophenol to 4-aminophenol, followed by UV-Vis spectroscopy. Finally, the hydrophobicity of the nanocomposites was alternated by tuning the blend composition. In the prepared nanocomposites, cotton and thermoplastics acted as very good supporting matrices for the Au NPs and provided satisfactory access to the NPs.

___

  • Allaf RM, 2019, J MECH BEHAV BIOMED, V97, P198, DOI 10.1016/j.jmbbm.2019.05.023
  • Balaz M, 2017, ADV POWDER TECHNOL, V28, P3307, DOI 10.1016/j.apt.2017.09.028
  • Baytekin HT, 2015, J AM CHEM SOC, V137, P1726, DOI 10.1021/ja507983x
  • Baytekin HT, 2013, SCIENCE, V341, P1368, DOI 10.1126/science.1241326
  • Baytekin HT, 2012, ANGEW CHEM INT EDIT, V51, P3596, DOI 10.1002/anie.201108110
  • Bhat DK, 2006, J POLYM ENVIRON, V14, P385, DOI 10.1007/s10924-006-0032-5
  • Chen L, 2015, ACS SUSTAIN CHEM ENG, V3, P978, DOI 10.1021/acssuschemeng.5b00110
  • Cheng HH, 2017, J APPL POLYM SCI, V134, DOI 10.1002/app.44336
  • Conte M, 2012, CATAL SCI TECHNOL, V2, P105, DOI 10.1039/c1cy00299f
  • de Moura MR, 2012, J FOOD ENG, V109, P520, DOI 10.1016/j.jfoodeng.2011.10.030
  • de Oliveira FM, 2016, CATALYSTS, V6, DOI 10.3390/catal6120215
  • Din MI, 2020, CRIT REV ANAL CHEM, V50, P322, DOI 10.1080/10408347.2019.1637241
  • Fountoulaki S, 2014, ACS CATAL, V4, P3504, DOI 10.1021/cs500379u
  • Geng QR, 2014, RSC ADV, V4, P16425, DOI 10.1039/c4ra01866d
  • Gong MM, 2017, CHEM REV, V117, P8447, DOI 10.1021/acs.chemrev.7b00024
  • Gubin SP, 2005, INT J MATER PROD TEC, V23, P2, DOI 10.1504/IJMPT.2005.006587
  • Hu HW, 2015, J MATER CHEM A, V3, P11157, DOI 10.1039/c5ta00753d
  • Kaushik M, 2016, GREEN CHEM, V18, P622, DOI 10.1039/c5gc02500a
  • Ke XB, 2013, GREEN CHEM, V15, P236, DOI 10.1039/c2gc36542a
  • Koga H, 2010, CHEM COMMUN, V46, P8567, DOI 10.1039/c0cc02754e
  • Krishnamurthy S, 2014, NANOSCALE RES LETT, V9, DOI 10.1186/1556-276X-9-627
  • Kuroda K, 2009, J MOL CATAL A-CHEM, V298, P7, DOI 10.1016/j.molcata.2008.09.009
  • Kwiczak-Yigitbasi J, 2020, GREEN CHEM, V22, P455, DOI 10.1039/c9gc02781e
  • Lacin O, 2019, POLYM DEGRAD STABIL, V168, DOI 10.1016/j.polymdegradstab.2019.108945
  • Lam E, 2012, NANOSCALE, V4, P997, DOI 10.1039/c2nr11558a
  • Li TQ, 2001, POLYM-PLAST TECHNOL, V40, P1, DOI 10.1081/PPT-100000116
  • Liao GF, 2016, J PHYS CHEM C, V120, P25935, DOI 10.1021/acs.jpcc.6b09356
  • Moon RJ, 2011, CHEM SOC REV, V40, P3941, DOI 10.1039/c0cs00108b
  • OSullivan AC, 1997, CELLULOSE, V4, P173, DOI 10.1023/A:1018431705579
  • Pinto RJB, 2012, NANOCOMPOSITES - NEW TRENDS AND DEVELOPMENTS, P73, DOI 10.5772/50553
  • Qiu WL, 2004, J APPL POLYM SCI, V94, P1326, DOI 10.1002/app.21123
  • Rachtanapun P, 2003, J APPL POLYM SCI, V88, P2842, DOI 10.1002/app.12170
  • Rak MJ, 2014, FARADAY DISCUSS, V170, P155, DOI 10.1039/c4fd00053f
  • Raouf RM, 2016, POLYMERS-BASEL, V8, DOI 10.3390/polym8040128
  • Sakaguchi M, 2012, J PHYS CHEM A, V116, P9872, DOI 10.1021/jp306261k
  • Sakaguchi M, 2010, BIOMACROMOLECULES, V11, P3059, DOI 10.1021/bm100879v
  • Salata V, 2004, J NANOBIOTECHNOL, V2, P3, DOI 10.1186/1477-3155-2-3
  • Samir MASA, 2005, BIOMACROMOLECULES, V6, P612, DOI 10.1021/bm0493685
  • Santos CSC, 2015, MATER TODAY-PROC, V2, P456, DOI 10.1016/j.matpr.2015.04.056
  • Smith AP, 1999, ADV MATER, V11, P1277, DOI 10.1002/(SICI)1521-4095(199910)11:15<1277::AID-ADMA1277>3.0.CO;2-9
  • Smith AP, 2000, MACROMOLECULES, V33, P2595, DOI 10.1021/ma991453v
  • Smith AP, 2000, MACROMOLECULES, V33, P1163, DOI 10.1021/ma9915475
  • Smith AP, 2000, POLYMER, V41, P6271, DOI 10.1016/S0032-3861(99)00830-7
  • SOHMA J, 1989, PROG POLYM SCI, V14, P451, DOI 10.1016/0079-6700(89)90004-X
  • Sohma J, 1976, NEW SCI ASP ADV POLY, P109, DOI DOI 10.1007/BFB0023970
  • Solala I, 2015, CELLULOSE, V22, P3217, DOI 10.1007/s10570-015-0724-x
  • Tang JT, 2015, IND ENG CHEM RES, V54, P3299, DOI 10.1021/acs.iecr.5b00177
  • Temnikov MN, 2018, GREEN CHEM, V20, P1962, DOI 10.1039/c7gc03862c
  • Tiquia-Arashiro S, 2016, EXTREMOPHILES APPL N, P163
  • Tsuzuki T, 2004, J MATER SCI, V39, P5143, DOI 10.1023/B:JMSC.0000039199.56155.f9
  • Ummartyotin S, 2015, RENEW SUST ENERG REV, V41, P402, DOI 10.1016/j.rser.2014.08.050
  • Willberg-Keyrilainen P, 2018, MATERIALS, V11, DOI 10.3390/ma11122358
  • Wu CN, 2014, ACS APPL MATER INTER, V6, P12707, DOI 10.1021/am502701e
  • Wu XD, 2014, ENVIRON SCI-NANO, V1, P71, DOI 10.1039/c3en00066d
  • Ying F, 2010, GOLD BULL, V43, P241, DOI 10.1007/BF03214994
  • Yuan Q, 2008, J THERMOPLAST COMPOS, V21, P195, DOI 10.1177/0892705708089472
  • Zhang FR, 2002, J MATER CHEM, V12, P24 .
  • Zhong H, 2017, IEEE INT CONF AUTOM, P671, DOI 10.1109/ASE.2017.8115677
  • Zhong TH, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/456834