Application of synthesized copper nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves as a colorimetric sensor for the detection of $Ag^+$

Application of synthesized copper nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves as a colorimetric sensor for the detection of $Ag^+$

The presented work demonstrates the preparation of copper nanoparticles (CuNPs) via aqueous leaves extract of Ziziphus mauritiana L. (Zm) using hydrazine as a reducing agent. Various parameters such as volume of extract, concentration of hydrazine hydrate, concentration of copper chloride, and pH of the solution were optimized to obtain Ziziphus mauritiana L. leaves extract derived copper nanoparticles (Zm-CuNPs). Brownish red color was initial indication of the formation of Zm-CuNPs while it was confirmed by surface plasmon resonance (SPR) band at wavelength of 584 nm using ultraviolet-visible (UV-vis) spectroscopy. Synthesized Zm-CuNPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffractometry (XRD). AFM images showed that the particle size of Zm-CuNPs was from 7 to 17 nm with an average size of 11.3 nm. Fabricated sensor (Zm-CuNPs) were used as a colorimetric sensor for the detection of Ag+ at a linear range between $0.67 × 10^{–6} – 9.3 × 103{–6}$ with R2 value of 0.992. For real water samples, limit of quantification (LOQ) and limit of detection (LOD) for Ag+ was found to be $330 × 10^{–9} and 100 × 10^{–9}$, respectively.

___

  • 1. Wu C, Xiong C, Wang L, Lan C, Ling L. Sensitive and selective localized surface plasmon resonance light scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst 2010; 135: 2682-2687. doi: 10.1039/c0an00201a
  • 2. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T et al. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. Journal of Nanomaterial 2015; 6: 1-9. doi: 10.1155/2015/136765
  • 3. Drake PL, Hazelwood KJ. Exposure related health effects of silver and silver compounds: a review. The Annals of Occupational Hygiene 2005; 47 (7): 575-585. doi: 10.1093/annhyg/mei019
  • 4. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 2013; 26: 609-621. doi: 10.1007/s10534-013-9645-z
  • 5. Catsakis LH, SulicaVI. Allergy to silver amalgam. Oral Surgery, Oral Medicine, Oral Pathology 1978; 46 (3): 371-375. doi: 10.1016/0030- 4220(78)90402-4
  • 6. Panyala NR, Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health. Journal of Applied Biomedicine 2008; 6: 117-129.
  • 7. Lin YH, Tseng WL. Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide based fluorogenic probe. Chemical Communications 2009; 43: 6619-6621. doi: 10.1039/b915990h
  • 8. Jacobson AR, McBride MB, Baveye P, Steenhuis TS. Environmental factors determining the trace level sorption of silver and thallium to soils. Science of the Total Environment 2005; 345 (1): 191-205. doi: 10.1016/j.scitotenv.2004.10.027
  • 9. Wang YW, Wang M, Wang L, Xu H, Tang S et al. A simple assay for ultrasensitive colorimetric detection of Ag+ at picomolar levels using platinum nanoparticles. Sensors 2017; 17 (11): 2521-2535. doi:10.3390/s17112521
  • 10. Abdallah EM, Elsharkawy ER, Eddra A. Biological activities of methanolic leaf extract of Ziziphus mauritiana. Bioscience Biotechnology Research Communication 2016; 9 (4): 605-614. doi: 10.21786/bbrc/9.4/6
  • 11. Chen Z, Chen B, He M, Wang H, Hu B. A porous organic polymer with magnetic nanoparticles on a chip array for pre-concentration of platinum (IV), gold (III) and bismuth (III) prior to their on-line quantitation by ICP-MS. Microchimica Acta 2019; 186: 107-112. doi: 10.1007/s00604-018-3139-1
  • 12. Park J, Lee S, Jang K, Na S. Ultra-sensitive direct detection of silver ions via kelvin probe force microscopy. Biosensors and Bioelectronics 2014; 60: 299-304. doi: 10.1016/j.bios.2014.04.038
  • 13. Rajar K, Balouch A, Bhanger MI, Shah MT, Shaikh T, Siddiqui S. Succinic acid functionalized silver nanoparticles (Suc-Ag NPs) for colorimetric sensing of melamine. Applied Surface Science 2018; 435: 1080-1086. doi: 10.1016/j.apsusc.2017.11.208
  • 14. Chang Y, Zhang Z, Hao J, Yang W, Tang J. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sensors and Actuators B: Chemical 2016; 232: 692-697. doi: 10.1016/j.snb.2016.04.039
  • 15. Sung YM, Wu SP. Highly selective and sensitive colorimetric detection of Ag(I) using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles. Sensors and Actuators B: Chemical 2014; 197: 172-176. doi: 10.1016/j.snb.2014.02.044
  • 16. Goudarzi M, Salavati-Niasari M. Synthesis, characterization and evaluation of $Co_3O_4$ nanoparticles toxicological effect; synthesized by cochineal dye via environment friendly approach. Journal of Alloys and Compounds 2019; 784: 676-685. doi: 10.1016/j.jallcom.2019.01
  • 17. Balasubramanian S, Jeyapaul U, Kala SM. Antibacterial activity of silver nanoparticles using Jasminum auriculatum stem extract. International Journal of Nanoscience 2019; 18 (1): 1850011-1850014. doi: 10.1142/s0219581x18500114
  • 18. Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E: Low-Dimensional Systems and Nanostructures 2010; 42 (5): 1417-1424. doi: 10.1016/j.physe.2009.11.081
  • 19. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry 2008; 10 (8): 859-862. doi: 10.1039/b804703k
  • 20. Rajar K, Balouch A, Bhanger MI, Sherazi TH, Kumar R. Degradation of 4-Chlorophenol under sunlight using ZnO nanoparticles as catalysts. Journal of Electronic Materials 2018; 47: 2177-2183. doi: 10.1007/s11664-017-6029-0
  • 21. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings 2016; 1724: 020048-020055. doi: 10.1063/1.4945168
  • 22. Patel BH, Channiwala MZ, Chaudhari SB, Mandot AA. Biosynthesis of coppernanoparticles its characterization and efficacy against human pathogenic bacterium. Journal of Environmental Chemical Engineering 2016; 4: 2163-2169. doi: 10.1016/j.jece.2016.03.046
  • 23. Hussain M, Nafady A, Sherazi ST, Shah MR, Alsalme A et al. Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid. RSC Advances 2016; 6: 82882-82889. doi: 10.1039/c6ra08571g
  • 24. Din MI, Rehan R. Synthesis, characterization and applications of copper nanoparticles. Analytical Letters 2017; 50: 50-62. doi: 10.1080/00032719.2016.1172081
  • 25. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV et al. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. Journal of Hazardous Materials 2012; 201: 244-249. doi: 10.1016/j.jhazmat.2011.11.077
  • 26. Batoool M, Masood B. Green synthesis of copper nanoparticles using Solanum lycopersicum (tomato aqueous extract) and study characterization. Journal of Nanoscience and Nanotechnology Research 2017; 1 (1): 1-5.
  • 27. Memon A, Memon N, Luthria D, Pitafi A, Bhanger M. Phenolic compounds and seed oil composition of Ziziphus mauritiana L. fruit. Journal of Food and Nutrition Sciences 2012; 62 (1): 15-21. doi: 10.2478/v10222-011-0035-3
  • 28. Memon AA, Memon N, Bhanger MI, Luthria DL. Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedures for quantification of total phenolic acids. Food Chemistry 2013; 139 (1-4): 496-502. doi: 10.1016/j.foodchem.2013.01.065
  • 29. Memon AA, Memon N, Bhanger MI, Luthria DL. Phenolic acids composition of fruit extracts of Ber (Ziziphus mauritiana L., var. Golo Lemai). Pakistan Journal of Analytical & Environmental Chemistry 2012; 13 (2): 123-128.
  • 30. Dobrucka R, Kaczmarek M, Dlugaszewska J. Cytotoxic and antimicrobial effect of biosynthesized silver nanoparticles using the fruit extract of Ribes nigrum. Advances in Natural Sciences: Nanoscience and Nanotechnology 2018; 9: 025015-025024. doi: 10.1088/2043- 6254/aac5a0
  • 32. Lou T, Chen L, Chen Z, Wang Y, Chen L et al. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Applied Materials & Interfaces 2011; 3 (11): 4215-4220. doi: 10.1021/am2008486
  • 33. Safavi A, Ahmadi R, Mohammadpour Z. Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensors and Actuators B: Chemical 2017; 242: 609-615. doi: 10.1016/j.snb.2016.11.043
  • 34. He Y, Liang Y, Song H. One-pot preparation of creatinine functionalized gold nanoparticles for colorimetric detection of silver ions. Plasmonics 2016; 11: 587-591. doi: 10.1007/s11468-015-0092-2
  • 35. Li X, Wu Z, Zhou X, Hu J. Colorimetric response of peptide modified gold nanoparticles: an original assay for ultrasensitive silver detection. Biosensors and Bioelectronics 2017; 92: 496-501. doi: 10.1016/j.bios.2016.10.075
  • 36. Du J, Du H, Ge H, Fan J, Peng X. A plasmonicnano-sensor for the fast detection of Ag+ based on synergistic coordination inspired gold nanoparticles Sensors and Actuators B: Chemical 2018; 255: 808-813. doi: 10.1016/j.snb.2017.08.034
  • 37. Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. International Journalof Current Microbiology and Applied Science 2014; 3 (9): 814-818.
  • 38. Padma PN, Banu ST, Kumari SC. Studies on green synthesis of copper nanoparticles using Punica granatum. Annual Research & Review in Biology 2018; 23: 1-10. doi: 10.9734/arrb/2018/38894
  • 39. Chung IM, Abdul Rahuman A, Marimuthu S, Vishnu Kirthi A, Anbarasan K et al. Green synthesis of copper nanoparticles using Ecliptaprostrata leaves extract and their antioxidant and cytotoxic activities. Experimental and Therapeutic Medicine 2017; 14 (1): 18-24. doi: 10.3892/etm.2017.4466
  • 40. Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chemistry Letter Revision 2016; 9 (1): 33-38. doi: 10.1080/17518253.2016.1141238.
  • 41. Thakur SA, Rai RA, Sharma SE. Study the antibacterial activity of copper nanoparticles synthesized using herbal plants leaf extracts. Intentional Journal of Bio-Technology and Research 2014; 4 (5): 21-34.
  • 42. Karimi J, Mohsenzadeh S. Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synthesis and Reactivity in Inorganic, Metal Organic and Nano-Metal Chemistry 2015; 45 (6): 895-898. doi: 10.1080/15533174.2013.862644
  • 43. Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 129: 255-258. doi: 10.1016/j.saa.2014.03.027
  • 44. Joseph AT, Prakash P, Narvi SS. Phytofabrication and characterization of copper nanoparticles using Allium sativum and its antibacterial activity. International Journal of Science, Engineering and Technology 2016; 4 (2): 463-72.