Adsorption isotherm modeling of carbendazim and flumetsulam onto homoionic-montmorillonite clays: comparison of linear and nonlinear models

Adsorption isotherm modeling of carbendazim and flumetsulam onto homoionic-montmorillonite clays: comparison of linear and nonlinear models

This study deals with the adsorption of two pesticides, carbendazim and flumetsulam, from aqueous solutions onto four homoionic-montmorillonite clays (Ag + , Zn 2+ , Cu 2+ , and H +). Equilibrium adsorption isotherm data were analyzed using Freundlich, Dubinin Radushkevich, and Temkin isotherms. Linear and nonlinear fitting methods were compared to determine the best-fitting isotherms for the experimental data. Three error analysis methods were used to evaluate the data for each method: the coefficient of determination (R2 ), sum of squared errors (SSE), and chi-square test (χ 2 ). Equilibrium adsorption isotherms exhibited that the carbendazim adsorption mainly involved cation exchange with homoionic-montmorillonite adsorbents. However, for flumetsulam, the main mechanisms were possibly the cation bridging by Ag + , Zn 2+ , and Cu 2+ cations and the surface complexation reactions of the adsorption on homoionicmontmorillonite (H +) adsorbent. The modeling results showed that the nonlinear Freundlich model could fit the data better than the Dubinin Radushkevich or Temkin models, with relatively higher R2 and smaller SSE and χ 2 values. Thus, the nonlinear method is a better way to obtain the isotherm parameters.

___

  • 1. Amaraneni, S. R. Environ. Int. 2006, 32, 294-302.
  • 2. Gupta, V. K.; Ali, I.; Suhas; Saini, V. K. J. Colloid Interf. Sci. 2006, 299, 556-563.
  • 3. Mostafalou, S.; Abdollahi, M. Toxicol. Appl. Pharm. 2013, 268, 157-177.
  • 4. Wu, C.; Luo, Y.; Gui, T.; Huang, Y. Sci. Total Environ. 2014, 470-471, 1047-1055.
  • 5. Papadakis, E. N.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Makris, K. C.; Papadopoulou-Mourkidou, E. Ecotox. Environ. Safe. 2015, 116, 1-9.
  • 6. Popp, J.; Peto, K.; Nagy, J. Agron. Sustain. Dev. 2013, 33, 243-255.
  • 7. Net, S.; Dumoulin, D.; El-Osmani, R.; Rabodonirina, S.; Ouddane, B. Int. J. Environ. Res. 2014, 8, 1159-1170.
  • 8. Lari, S. Z.; Khan, N. A.; Gandhi, K. N.; Meshram, T. S.; Thacker, N. P. J. Environ. Health Sci. Eng. 2014, 12, 1-7.
  • 9. Silva, E.; Daam, M. A.; Cerejeira, M. J. Chemosphere 2015, 135, 394-402.
  • 10. Nam, S. W.; Jo, B. I.; Yoon, Y.; Zoh, K. D. Chemosphere 2014, 95, 156-165.
  • 11. B´anyiov´a, K.; Neˇcasov´a, A.; Kohoutek, J.; Justan, I.; Cupr, P. ˇ Chemosphere 2016, 145, 148-156.
  • 12. Liu, K.; Pan, X.; Han, Y.; Tang, F.; Yu, Y. Sci. Total Environ. 2012, 438, 26-32.
  • 13. Rama, E. M.; Bortolan, S.; Vieira, M. L.; Gerardin, D. C. C.; Moreira, E. G. Regul. Toxicol. Pharm. 2014, 69, 476-486.
  • 14. Felix, J.; Doohan, D. J.; Ditmarsen, S. C.; Schultz, M. E.; Wright, T. R.; Flood, B. R.; Rabaey, T. L. Crop Prot. 2005, 24, 790-797.
  • 15. Strebe, T. A.; Talbert, R. E. Weed Sci. 2001, 49, 806-813.
  • 16. Fontaine, D. D.; Lehmann, R. G.; Miller, J. R. J. Environ. Qual. 1991, 20, 759-762.
  • 17. Larsbo, M.; L¨ofstrand, E.; De Veer, D. V. A.; Ul´en, B. J. Contam. Hydrol. 2013, 147, 73-81.
  • 18. Kodeˇsov´a, R.; Koˇc´arek, M.; Kodeˇs, V.; Dr´abek, O.; Koz´ak, J.; Hejtm´ankov´a, K. J. Hazard. Mater. 2011, 186, 540-550.
  • 19. Yan, W.; Hu, S.; Jing, C. J. Colloid Interf. Sci. 2012, 372, 141-147.
  • 20. G´amiz, B.; L´opez-Cabeza, R.; Facenda, G.; Velarde, P.; Hermos´ın, M. C.; Cox, L.; Celis, R. Agric. Ecosyst. Environ. 2016, 230, 32-41.
  • 21. Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M. Desalination 2007, 206, 499-506.
  • 22. Ho, Y. S. Pol. J. Environ. Stud. 2006, 15, 81-86.
  • 23. Karadag, D.; Koc, Y.; Turan, M.; Ozturk, M. J. Hazard. Mater. 2007, 144, 432-437.
  • 24. Giles, C. H.; MacEwan, T. H.; Nakhwa, S. N.; Smith, D. J. Chem. Soc. 1960, 3973-3993.
  • 25. Cancela, G. D.; Taboada, E. R.; Sanchezrasero, F. J. Soil Sci. 1992, 43, 99-111.
  • 26. Ma, Y. L.; Xu, Z. R.; Guo, T.; You, P. J. Colloid Interf. Sci. 2004, 280, 283-288.
  • 27. Li, Z.; Hong, H.; Liao, L.; Ackley, C. J.; Schulz, L. A.; MacDonald, R. A.; Mihelich, A. L.; Emard, S. M. Colloid. Surface. B 2011, 88, 339-344.
  • 28. Zhao, Y.; Geng, J.; Wang, X. Ecotoxicology 2011, 20, 1141-1147.
  • 29. Peruchi, L. M.; Fostier, A. H.; Rath, S. Chemosphere 2015, 119, 310-317.
  • 30. Parolo, M. E.; Avena, M. J.; Pettinari, G. R.; Baschini, M. T. J. Colloid Interf. Sci. 2012, 368, 420-426.
  • 31. Wang, C. J.; Li, Z.; Jiang, W. T.; Jean, J. S.; Liu, C. C. J. Hazard. Mater. 2010, 183, 309-314.
  • 32. Wu, Q.; Li, Z.; Hong, H. Appl. Clay Sci. 2013, 74, 66-73.
  • 33. Figueroa, R. A.; Mackay, A. A. Environ. Sci. Technol. 2005, 39, 6664-6671.
  • 34. Ramos, M. E.; Huertas, F. J. Appl. Clay Sci. 2013, 80-81, 10-17.
  • 35. Gonz´alez Garc´ıa, F.; Gonz´alez Garc´ıa, S. 1953, 925-992.
  • 36. Goldberg, S. In Chemical Processes in Soils; Tabatabai, M. A.; Sparks, D. L., Eds. Soil Science Society of America: Madison, WI, USA, 2005, pp. 489-517.
  • 37. Ho, Y. S.; Chiu, W. T.; Wang, C. C. Bioresource Technol. 2005, 96, 1285-1291.
  • 38. Freundlich, H. M. F. Z. Phys. Chem. 1906, 57, 385-470.
  • 39. Xu, J.; Wang, L.; Zhu, Y. Langmuir 2012, 28, 8418-8425.
  • 40. Foo, K. Y.; Hameed, B. H. Chem. Eng. J. 2010, 156, 2-10.
  • 41. Sdiri, A.; Higashi, T.; Hatta, T.; Jamoussi, F.; Tase, N. Chem. Eng. J. 2011, 172, 37-46.
  • 42. Ak¸cay, G.; Kılın¸c, E.; Ak¸cay, M. Colloid. Surface. A 2009, 335, 189-193.
  • 43. Ho, Y. S.; Porter, J. F.; McKay, G. Water Air Soil Poll. 2002, 141, 1-33.
  • 44. Han, R.; Zhang, J.; Han, P.; Wang, Y.; Zhao, Z.; Tang, M. Chem. Eng. J. 2009, 145, 496-504.