A review: a comparison of different adsorbents for removal of Cr (VI), Cd (II) and Ni (II)

A review: a comparison of different adsorbents for removal of Cr (VI), Cd (II) and Ni (II)

A review of the studies dealing with the removal of chromium, cadmium, and nickel ions with different adsorbents published in the literature between 2014 and 2018 is given in tabular form, along with the adsorption conditions, adsorption isotherm, and kinetic models applied by the authors to model the experimental data and adsorption capacities. The review focuses on the efficiency of ion removal.

___

  • 1. Brinkmann T, Santonja GG, Yükseler H, Roudier S, Sancho LP. Best avaliabe Techniques (BAT) Reference document for common waste water and waste gas treatment/management systems in the shemical sector. JRC Science for Policy Report. Industrial Emissions Directive 2010/75/EU.
  • 2. Baghani AN, Hossein MA, Gholami M, Rastkari N, Delikhoon M. One-pot synthesis, characterization and adsorption studies of amine-functionalizedmmagnetite nanoparticles for removalmof Cr(VI) and Ni(II) ions from aqueousmsolution: kinetic, isotherm and thermodynamic studies. Journal of environmental Healts Science and Engineering 2016; 11: 1-12. doi: 10.1186/s40201-016-0252-0
  • 3. Taman R, Ossman M, Mansour M, Farag H. Metal oxide nano-particles as an adsorbent for removal of heavy metals. Journal of Advanced Chemical Engineering 2015; 5 (3): 1-8. doi: 10.4172/2090-4568.1000125
  • 4. Kučić D, Simonič M, Furač L. Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste. Chemical and Biochemical Engineering Quarterly 2017; 31 (4): 497-507. doi: 10.15255/CABEQ.2017.1100
  • 5. Chandraiah MR. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alexandria Engineering Journal 2016; 55 (1): 619-625. doi: 10.1016/j.aej.2015.12.015
  • 6. Yang RT. Adsorbents: fundamentals and applications. Hoboken, NJ, USA: John Wiley and Sons Inc., 2003.
  • 7. Mccabe WL, Smith JC, Harriott P. Unit operations of chemical engineering. New York, NY, USA: McGeaw-Hill Inc., 2001.
  • 8. Liu J, Dai M, Song S, Peng C. Removal of Pb(II) and Cr(VI) from aqueous solutions using the prepared porous adsorbent-supportedm Fe/Ni nanoparticles. RSC Advances 2018; 56 (8): 32063-32072. doi: 10.1039/c8ra04324h
  • 9. Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M et al. Rapid adsorption of heavy metals by Fe 3 O4 /Talc nanocomposite and optimization study using response surface methodology. International Journal of Molecular Sciences 2014; 15 (7): 12913-12927. doi: 10.3390/ijms150712913
  • 10. Wang H, Yuan X, Wu Y, Chen X, Leng L et al. Facile synthesis of polypyrrole decorated reduced graphene oxideFe 3 O4 magnetic composites and its application for the Cr(VI) removal. Chemical Engineering Journal 2015; 262: 597-606. doi: 10.1016/j.cej.2014.10.020
  • 11. Sharma R, Sarswat A, Pittman CU, Mohan D. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances 2017; 7 (14): 8606-8624. doi: 10.1039/c6ra25295h
  • 12. Zhang X, Wang X. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/ montmorillonite nanocomposite. PLOS ONE 2015; 10 (2): 1-21. doi: 10.1371/journal.pone.0117077
  • 13. Padmavathy KS, Madhub G, Haseena PV. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Procedia Technology 2016; 24: 585-594. doi: 10.1016/j.protcy.2016.05.127
  • 14. Tytłak T, Oleszczuk P, Dobrowolski R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions. Environmental Science and Pollution Research 2015; 22 (8): 5985-5994. doi: 10.1007/s11356-014-3752-4
  • 15. Wang K, Qiu G, Cao H, Jin R. Removal of Chromium(VI) from aqueous solutions using Fe 3 O4 magnetic polymer microspheres functionalized with amino groups. Materials 2015; 8 (12): 8378-8391. doi: 10.3390/ma8125461
  • 16. Pranoto A, Masvkur Y, Nugroho A. Adsorption effectivity test of Andisols Clay-Zeolite (ACZ) composite as chromium hexavalent (Cr(VI)) ion adsorbent. Science and Engineering 2018; 333: 1-7. doi: 10.1088/1757- 899X/333/1/012057
  • 17. Huang Z, Wang X, Yang D. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water science and Engineering 2015; 8 (3): 226-232. doi: 10.1016/j.wse.2015.01.009
  • 18. Parsons JG, Hernandez J, Gonzales CM, Torresdey GJL. Sorption of Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite $(Fe_3 O_4)$ particles. Chemical Engineering Journal 2014; 254: 171-180. doi: 10.1016/j.cej.2014.05.112
  • 19. Mohammadi A, Ataie A, Sheibani A. Advanced materials letters chromium(VI) ions adsorption onto barium hexaferrite magnetic nano-adsorbent. Advanced Materials Letters 2016; 7 (7): 579-586. doi: 10.5185/amlett.2016.6394
  • 20. Kumar KAS, Jiang SJ, Tseng WL. Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A 2015; 3: 7044-7057. doi: 10.1039/c4ta06948j
  • 21. Rai M, Giri BS, Nath Y, Singh RP. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: Kinetics, equilibrium and thermodynamics study. Journal of Water Supply: Research and Technology 2018; 67 (8): 724-737. doi: 10.2166/aqua.2018.047
  • 22. Kumar A, Jena HM. Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with $ZnCl_2$ . Process Safety and Environmental Protection 2017; 109: 63-71. doi: 10.1016/j.psep.2017.03.032
  • 23. Al-Khaldi IFA, Abu-Sharkh B, Abulkibash AM, Qureshi MI, Laoui T et al. Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment 2016; 57 (16): 7232-7244. doi: 10.1080/19443994.2015.1021847
  • 24. Dubey R, Bajpai J, Bajpai AK. Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr(VI) ions from aqueous solution. Journal of Water Process Engineering 2015; 5: 83-94. doi: 10.1016/j.jwpe.2015.01.004
  • 25. Sharma YC, Srivastava V, Singh V, Weng CH. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology 2009; 30 (6): 583-609. doi: 10.1080/09593330902838080
  • 26. Huang X, Chen T, Zou X, Zhu M, Chen D et al. The Adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. International Journal of Environmental Research and Public Health 2017; 14 (10): 1145-1156. doi: 10.3390/ijerph14101145
  • 27. Ruthiraan M, Mubarak NM, Thines RK, Abdullah EC, Sahu JN et al. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of $Cd^{2+}$ ions from wastewater. Korean Journal of Chemical Engineering 2015; 32 (3): 446-457. doi: 10.1007/s11814-014-0260-7
  • 28. Keshvardoostchokami M, Babaei L, Zamani AA, Parizanganeh AH, Piri F. Synthesized chitosan/ iron oxide nanocomposite and shrimp shell in removal of nickel, cadmium and lead from aqueous solution. Global Journal of Environmental Science and Management 2017; 3 (3): 267-278. doi: 10.22034/gjesm.2017.03.03.004
  • 29. Renu MA, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination 2016; 7 (4): 387-419. doi: 10.2166/wrd.2016.104
  • 30. Kyzas GZ, Bikiaris DN. Recent modifications of chitosan for adsorption applications: a critical and systematic review. Marine Drugs 2015; 13 (1): 312-337. doi: 10.3390/md13010312
  • 31. Huang Y, Yang C, Sun Z, Zengac G, He H. Removal of cadmium and lead from aqueous solutions using nitrilotriacetic acid anhydride modified ligno-cellulosic material. RSC Advances 2015; 5 (15): 11475-11484. doi: 10.1039/c4ra14859b
  • 32. IARC working group on the evaluation of carcinogenic risk to humans. Arsenic, metals, fibers and dusts. Lyon, France: International Agency for Research on Cancer, 2012.
  • 33. Yusuf M, Fariduddin Q, Hayat S, Ahmad A. Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology 2011; 86 (1): 1-17. doi: 10.1007/s00128-010-0171-1
  • 34. Manjuladevi M, Anitha R, Manonmani S. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science 2018; 8 (1): 1-8. doi: 10.1007/s13201-018-0674-1
  • 35. Igberase E. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. International Journal of Analytical Chemistry 2017; 2017 (2): 1-15. doi: 10.1155/2017/6150209
  • 36. Cui YW, Li1 J, Du ZF, Peng YZ. Cr(VI) adsorptionon on red mud modified by lanthanum: performance, kinetics and mechanisms. PLOS ONE 2016; 11 (9): 1-16. doi: 10.1371/journal.pone.0161780
  • 37. ÇiftÇi H, Ersoy B, Evcin A. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Physica Polonica A 2017; 132 (3): 564-569. doi: 10.12693/APhysPolA.132.564
  • 38. Elfeky SA, Mahmoud SE, Youssef AF. Applications of CTAB modified magnetic nanoparticles for removal of chromium(VI) from contaminated water. Journal of Advanced Research 2017; 8 (4): 435-443. doi: 10.1016/j.jare.2017.06.002
  • 39. Najim TS, Salim AJ. Polyaniline nanofibers and nanocomposites: preparation, characterization, and application for Cr(VI) and phosphate ions removal from aqueous solution. Arabian Journal of Chemistry 2017; 10 (2): 3459-3467. doi: 10.1016/j.arabjc.2014.02.008
  • 40. Zhu H, Zhou Y, Wang S, Wu X, Hou J et al. Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr(VI). RSC Advances 2018; 8 (49): 27654-27660. doi: 10.1039/c8ra05291c
  • 41. Ji S, Miao C, Liu H, Feng L, Yang X et al. A hydrothermal synthesis of Fe 3 O4 @C hybrid nanoparticle and magnetic adsorptive performance to remove heavy metal ions in aqueous solution. Nanoscale Research Letters 2018; 13 (1): 178-188. doi: 10.1186/s11671-018-2580-8
  • 42. Kara A, Demirbel E, Sözeri H, Küçük İ, Ovalıoğlu H. Synthesis and characterization of barium ferrite containing magnetic affinity microbeads and isotherm analysis of Cr(VI) ions adsorption from aqueous solutions. Journal of Biological Chemistry 2014; 42 (3): 299-312.
  • 43. Malwase K, Lataye D, Mhaisalkar V, Kurwadkar S, Ramirez D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. International Journal of Environmental Science and Technology 2016; 13 (9): 2107-2116. doi: 10.1007/s13762-016-1042-z
  • 44. Yang T, Meng L, Han S, Hou J, Wang S et al. Simultaneous reductive and sorptive removal of Cr(VI) by activated carbon supported b-FeOOH. RSC Advances 2017; 7 (55): 34687-34693. doi: 10.1039/c7ra06440c
  • 45. Chen Y, An D, Sun S, Gao J, Qian L. Reduction and removal of chromium VI in water by powdered activated carbon. Materials 2018; 11 (2): 269-281. doi: 10.3390/ma11020269
  • 46. Khosrowshahi GS, Behnajady MA. Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom. International Journal of Environmental Science and Technology 2016; 13 (7): 1803- 1814. doi: 10.1007/s13762-016-0978-3
  • 47. Sureshkumar V, Kiruba DSCG, Ruckmani K, Sivakumar M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Applied Nanoscience 2016; 6 (2): 277-285. doi: 10.1007/s13204-015-0429-3
  • 48. Al-Homaidan AA, Hussein S, Al-Qahtani HS, Al-Ghanayem AA, Ameen F et al. Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences 2018; 25 (8): 1733-1738. doi: 10.1016/j.sjbs.2018.07.011
  • 49. Liu J, Wu X, Hu Y, Dai C, Peng Q et al. Effects of Cu(II) on the adsorption behaviors of Cr(III) and Cr(VI) onto kaolin. Journal of Chemistry 2016; 1-11. doi: 10.1155/2016/3069754
  • 50. Ghanbarpourabdoli N, Raygan S, Abdizadeh H. Investigating selective removal of Cr(VI) and zinc ions from aqueous media by mechanical-chemical activated red mud. Iranian Journal of Materials Science and Engineering 2016; 13 (4): 20-32. doi: 10.220687ijmse.13.4.20
  • 51. Ma M, Lu Y, Chen R, Ma L, Wang Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open Journal of Applied Sciences 2014; 4 (5): 275-284. doi: 10.4236/ojapps.2014.45027
  • 52. Khosravi R, Fazlzadehdavil M, Barikbin B, Taghizadeh AA. Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala. Applied Surface Science 2014; 292: 670-677. doi: 10.1016/j.apsuc.2013.12.031
  • 53. Samuel SM, Abigail MEA, Chidambaram R. Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr(VI) using fungal biomass. PLOS ONE 2015; 10 (3): 1-15. doi: 10.1371/journal.pone.0116884
  • 54. Samuel SM, Abigail MEA, Chidambaram R. Biosorption of Cr(VI) by ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLOS ONE 2015; 10 (3): 1-23. doi: 10.1371/journal.pone.0118999
  • 55. Seffah K, Zafour-Hadj-Ziane A, Achour AT, Guillet JF, Lonchambon P et al. Adsorption of cadmium ions from water on doublewalled carbon nanotubes/iron oxide composite. Chemistry Journal of Moldova, General, Industrial and Ecological Chemistry 2017; 12 (2): 71-78. doi: 10.19261/cjm.2017.412
  • 56. Budimirović D, Veličković ZS, Bajić Z, Miloševič DL, Nikolić JB et al. Removal of heavy metals from water using multistage functionalized multiwall carbon nanotubes. Journal of the Serbian Chemical Society 2017; 82 (10): 1175-11991. doi: 10.2298/jsc170422066b
  • 57. Ghafoor S, Ata S. Synthesis of carboxyl-modified Fe 3 O4 @SiO2 nanoparticles and their utilization for the remediation of cadmium and nickel from aqueous solution. Journal of the Chilean Chemical Society 2017; 62 (3): 3588-3592. doi: 10.4067/s0717-97072017000303588
  • 58. Ihsanullah FAAK, Abusharkh B, Khaled M, Atieh MA, Nasser MS et al. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids 2015; 204: 255-263. doi: 10.1016/j.molliq.2015.01.033
  • 59. Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad A. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences 2015; 22 (6): 795-800. doi: 10.1016/j.sjbs.2015.06.010
  • 60. Javadian H, Ghorbani F, Tayebi HA, Asl SMH. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry 2015; 8 (6): 837-849. doi: 10.1016/j.arabjc.2013.02.018
  • 61. Huang Y, Keller AA. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Research 2015; 80: 159-168. doi: 10.1016/j.watres.2015.05.011
  • 62. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Healts Science and Engineering 2015; 13 (1): 84-91. doi: 10.1186/s40201-015-0237-4
  • 63. Jain M, Garg VK, Garg UK, Kadirvelu K, Sillanpää M. Cadmium removal from wastewater using carbonaceous adsorbents prepared from sunflower waste. International Journal of Environmental Research 2015; 9 (3): 1079-1088. doi: 10.22059/ijer.2015.995
  • 64. Sounthararajah DP, Loganathan P, Kandasamy J, Vigneswaran S. Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. International Journal of Environmental Research and Public Health 2015; 12 (9): 10475-10489. doi: 10.3390/ijerph120910475
  • 65. Lee SJ, Park JH, Ahn YT, Chung JW. Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions. Water, Air and Soil Pollution 2015; 226 (2): 1-11. doi: 10.1007/s11270-014-2275-4
  • 66. Li B, Yang L, Wang C, Zhang Q, Liu Q et al. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017; 175: 332-340. doi: 10.1016/j.chemosphere.2017.02.061
  • 67. Tran HN, Chao HP. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Management and Research 2016; 34 (2): 129-138. doi: 10.1177/0734242X15615698
  • 68. Guo X, Tang S, Song Y, Nan J. Adsorptive removal of Ni 2+ and $Cd^{2+}$ from wastewater using a green longan hull adsorbent. Adsorption Science and Technology 2018; 36 (1): 762-773. doi: 10.1177/0263617417722254
  • 69. Boudaoud A, Djedid M, Benalia M, Ad C, Bouzar N et al. Removal of nickel (II) and cadmium (II) ions from wastewater by palm fibers. Scientific Study and Research Chemistry and Chemical Engineering, Biotechnology, Food Industry 2017; 18 (4): 391-406.
  • 70. Harsha KRS, Murthy M, Udayasimha L, Rangappa D. Synthesis and characterization of activated carbon coated alumina as nano adsorbent. Materials Today 2017; 4 (11): 12321-12327. doi: 10.1016/j.matpr.2017.09.166
  • 71. Konicki W, Aleksandrzak M, Mijowska E. Equilibrium and kinetics studies for the adsorption of $Ni^{2+}$ and $Fe^{3+}$ ions from aqueous solution by graphene oxide. Polish Journal of Chemical Technology 2017; 19 (3): 120-129. doi: 10.1515/pjct-2017-0058
  • 72. Konicki W, Pelka R, Arabczyk W. Adsorption of $Ni^{2+}$ from aqueous solution by magnetic Fe@graphite nanocomposite. Polish Journal of Chemical Technology 2016; 18 (4): 96-103. doi: 10.1515/pjct-2016-0077
  • 73. Sobhanardakani S, Zandipakb R, Mohammadi MJ. Removal of Ni(II) and Zn(II) from aqueous solutions using chitosan. Archives of Hygiene Sciences 2016; 5 (1): 47-55.
  • 74. Khelifi O, Mouna N, Affoune AM. Nickel (II) adsorption from aqueous solutions by physico-chemically modified sewage sludge. Iranian Journal of Chemistry and Chemical Engineering 2018; 37 (1): 73-87. doi: 1021- 9986/2018/2/73-87
  • 75. Ossman ME, Abdelfatah M, KirosY. Preparation, characterization and adsorption evaluation of old newspaper fibres using basket reactor (nickel removal by adsorption). International Journal of Environmental Research 2016; 10 (1): 119-130. doi: 10.22059/ijer.2016.56894
  • 76. Mustaqeem M, Sharif BM, Patil PR. Adsorption of Ni (II) ion from metal solution using natural adsorbents international. Journal of Emerging Trends in Engineering and Development 2015; 5 (4): 33-43. doi: 10.1007/s10450- 012-9464-5
  • 77. Muhaisen LF. Nickel ions removal from aqueous solutions using sawdust as adsorbent: equilibrium, kinetic and thermodynamic studies. Journal of Engineering and sustainable Development 2017; 21 (3): 60-72.
  • 78. Florence JAK, Gomathi T, Thenmozhi N, Sudha PN. Adsorption study: removal of nickel ions using kenaf fiber/chitosan biosorbent. Journal of Chemical and Pharmaceutical Research 2015; 7 (5): 410-422.