A novel hypobromous acid scavenging activity assay using p-cresol as a spectrofluorometric probe

A novel hypobromous acid scavenging activity assay using p-cresol as a spectrofluorometric probe

In this study, a novel spectrofluorometric assay based on p-cresol (4-methyl phenol) probe is developed for the measurement of HOBr scavenging activity. It is the first study involving the use of a p-cresol probe for the determination of the HOBr scavenging activity of biothiols. While the p-cresol probe (λex = 260 nm, λem = 305 nm) has fluorescence characteristics, its brominated derivatives emerging at the end of the oxidation reaction with HOBr do not show fluorescence. The initial fluorescence intensity of the p-cresol probe is decreased in the presence of the brominating agent, HOBr, and this decrease is lower in the presence of HOBr scavenging antioxidants. The scavenging activities of biothiols tested with respect to the developed method decrease in the following order: penicillamine > N-acetyl cysteine > L-glutathione (reduced) > cysteamine > homocysteine > glutathione ethyl ester > cysteine > 1,4-dithiothreitol > lipoic acid > methionine. Penicillamine $(IC_{50} = 10.12 µM)$ was the most effective HOBr-scavenger among the tested biothiols. The results obtained with the developed method for biothiols and some pharmaceutical samples were statistically compared (using ANOVA) to those found by the reference methods (KI/taurine and UPLC). The advantage of the proposed method over the KI/taurine assay was demonstrated.

___

  • 1. Thomas, E. L. Infect. Immun. 1979, 23, 522-531.
  • 2. Justino, G. C.; Rodrigues, M.; Florˆencio, M. H.; Mira, L. J. Mass Spectrom. 2009, 44, 1459-1468.
  • 3. Pattison, D. I.; Davies, M. J. Biochemistry 2004, 43, 4799-4809.
  • 4. Storkey, C.; Pattison, D. I.; White, J. M.; Schiesser, C. H.; Davies, M. J. Chem. Res. Toxicol. 2012, 25, 2589-2599.
  • 5. Ximenes, V. F.; Morgon, N. H.; de Souza, A. R. J. Inorg. Biochem. 2015, 146, 61-68.
  • 6. Wang, J.; Slungaard, A. Arch. Biochem. Biophys. 2006, 445, 256-260.
  • 7. Landino, L. M.; Mall, C. B.; Nicklay, J. J.; Dutcher, S. K.; Moynihan, K. L. Nitric Oxide 2008, 18, 11-18.
  • 8. Nagy, P.; Beal, J. L.; Ashby, M. T. Chem. Res. Toxicol. 2006, 19, 587-593.
  • 9. Hawkins, C. L.; Davies, M. J. Free Radical Bio. Med. 2005, 39, 900-912.
  • 10. Xu, K.; Luan, D.; Wang, X.; Hu, B.; Liu, X.; Kong, F.; Tang, B. Angew. Chem. Int. Edit. 2016, 55, 12751-12754.
  • 11. Yu, F.; Song, P.; Li, P.; Wang, B.; Han, K. Chem. Commun. 2012, 48, 7735-7737.
  • 12. Grootboom, N.; Nyokong, T. Anal. Chim. Acta 2001, 432, 49-57.
  • 13. Ozy¨urek, M.; Bekde¸ser, B.; Güçlü, K.; Apak, R. Anal. Chem. 2012, 84, 9529-9536.
  • 14. Niwa, T. Clin. Chem. 1993, 39, 108-111.
  • 15. Gallard, H.; Pellizzari, F.; Crou´e, J. P.; Legube, B. Water Res. 2003, 37, 2883-2892.
  • 16. Marcinkiewicz, J. J. Biomed. Sci. 2010, 17, 1-5.
  • 17. Thomas, E. L.; Bozeman, P. M.; Jefferson, M. M.; King, C. C. J. Biol. Chem. 1995, 270, 2906-2913.
  • 18. Marcinkiewicz, J.; Kontny, E. Amino Acids 2014, 46, 7-20.
  • 19. Weiss, S. J.; Klein, R.; Slivka, A.; Wei, M. J. Clin. Invest. 1982, 70, 598-607.
  • 20. Ellman, G. L. Arch. Biochem. Biophys. 1959, 82, 70-77.
  • 21. Alexander, N. M. Anal. Biochem. 1962, 4, 351-355.
  • 22. Dypbukt, J. M.; Bishop, C.; Brooks, W. M.; Thong, B.; Eriksson, H.; Kettle, A. J. Free Radical Bio. Med. 2005, 39, 1468-1477.
  • 23. Lo Conte, M.; Carroll, K. S. In Oxidative Stress and Redox Regulation; Jakob, U.; Reichmann, D., Eds. Springer: Netherlands, 2013, pp. 1-42.
  • 24. Darkwa, J.; Mundoma, C.; Simoyi, R. H. J. Chem. Soc. Faraday T. 1998, 94, 1971-1978.
  • 25. Soobrattee, M. A.; Neergheen, V. S.; Luximon-Ramma, A.; Aruoma, O. I.; Bahorun, T. Mutat. Res. 2005, 579, 200-213.
  • 26. Aruoma, O. I.; Halliwell, B.; Hoey, B. M.; Butler, J. Biochem. J. 1988, 256, 251-255.
  • 27. Morakinyo, M. K.; Chikwana, E.; Simoyi, R. H. Can. J. Chem. 2008, 86, 416-425.
  • 28. Aruoma, O. I. Gen. Pharmacol. 1997, 28, 269-272.
  • 29. Vissers, M. C. M.; Carr, A. C.; Chapman, A. L. P. Biochem. J. 1998, 330, 131-138.
  • 30. Gazda, M.; Margerum, D. W. Inorg. Chem. 1994, 33, 118-123.
  • 31. Gressier, B.; Lebegue, N.; Brunet, C.; Luyckx, M.; Dine, T.; Cazin, M.; Cazin, J. C. Pharm. World Sci . 1995, 17, 76-80.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The synthesis of new oxindoles as analogs of natural product 3,3$^\prime $-bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD

Sinan BAYINDIR, Adnan AYNA, Yusuf TEMEL, Mehmet ÇİFTCİ

Burcu BEKDEŞER, Gülüzar ZEYTÜNLÜ, Mustafa ÖZYÜREK, Mustafa Reşat APAK

Merve ÇINAR, Yasemin İşlek COŞKUN, Tülin Deniz ÇİFTÇİ

Golnaz Parvizi FARD, Reza Emamali SABZI

The synthesis of new oxindoles as analogs of natural product 3,3′ -bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PDand 6PGD

Sinan BAYINDIR, Adnan AYNA, Mehmet ÇİFTCİ, Yusuf TEMEL

$Nickel(II)-PPh_3$ complexes with ONS and ONN chelating thiosemicarbazones: synthesis and inhibition potential on influenza A viruses

Şükriye GÜVELİ, Kadir TURAN, Bahri ÜLKÜSEVEN

A new member of Mo36- polyoxoanion’s family: synthesis, crystal structure, and physico-chemical properties of $K_{10} [Mo_{36}O_{110} (OH)_6 (H_2O)_{12} ].38 H_2O$

Anissa HAJ ABDALLAH, Amor HADDAD, Jawaher BAIZIG

Sevgican TUNCER, İbrahim ÖZÇEŞMECİ, Behice Şebnem SESALAN, Ayfer Kalkan BURAT

Oxime-containing acetylcholinesterase reactivators and their complexes with Pd(II) and Pt(II) ions: recent developments

Ahmed NEDZHIB, Liudmil ANTONOV, Ivayla PANTCHEVA

Multiwall carbon nanotube paste electrode as a sensor for sensitive determination of deferasirox in the presence of uric acid: application for the analysis of pharmaceutical and biological samples

Golnaz PARVIZI FARD, Reza EMAMALI SABZI