Wrinkled surface on helical cell wall thickening of vessel elements in flower style

Wrinkled surface on helical cell wall thickening of vessel elements in flower style

In the present study, wrinkled surfaces were discovered on the cell wall thickenings of helical vessels in the lilac style for thefirst time. The structure of the wrinkles was formed by cellulose microfibrils, with convex ridges composed of crystalline cellulose andconcave grooves composed of amorphous cellulose. The cellulose microfibrils were oriented with the helical cell wall thickenings. Thewrinkle morphology was due to the aligned crystalline region of the microfibrils. The wrinkle structure in the flower style might berelated to the faster growth rate of style tissues during helix cell wall thickening development. Discovery of the wrinkled surface couldhelp with the study of the developmental mechanism of helical vessel cells.

___

  • Abdul Khalil HPS, Yusra AFI, Bhat AH, Jawaid M (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products 31(1): 113-121.
  • Alemdar A, Sain M (2008). Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresource Technology 99(6): 1664-1671.
  • Azizi Samir MAS, Alloin F, Dufresne A (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.
  • Bagniewska-Zadworna A, Arasimowicz-Jelonek M, Smoliński DJ, Stelmasik A (2014). New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions. Annals of Botany 113(7): 1235-1247.
  • Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014). A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21(1): 261-273.
  • Carpita NC (2012). Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Current Opinion in Biotechnology 23(3): 330-337.
  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD et al. (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. The Plant Cell 21(4): 1141-1154.
  • Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H et al. (2015). Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis. The Plant Cell 27(10): 2709-2726.
  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F et al. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1): 57-65.
  • Gardiner JC, Taylor NG, Turner SR (2003). Control of cellulose synthase complex localization in developing xylem. The Plant Cell 15(8): 1740-1748.
  • Gotelli MM, Lattar EC, Zini LM, Galati BG (2017). Style morphology and pollen tube pathway. Plant Reproduction 30(4): 155-170.
  • Guerriero G, Fugelstad J, Bulone V (2010). What do we really know about cellulose biosynthesis in higher plants? Journal of Integrative Plant Biology 52(2): 161-175.
  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology 11(7): 797-806.
  • Habibi Y, Lucia LA, Rojas OJ (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.
  • Horikawa Y, Sugiyama J (2008). Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/ rehydrogenation and FTIR technique. Cellulose 15(3): 419-424.
  • K.V. Sarkanen CHL (1971). Lignins: Occurrence, Formation, Structure and Reactions. New York, NY, USA: Wiley Interscience.
  • Kacurakova M, Capek P, Sasinkov V, Wellner N, Ebringerov A (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43(2): 195-203.
  • Kataoka Y, Kondo T (1998). FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31(3): 760-764.
  • Kerstens S, Verbelen J-P (2003). Cellulose orientation at the surface of the Arabidopsis seedling: implications for the biomechanics in plant development. Journal of Structural Biology 144(3): 262- 270.
  • Kumar M, Mishra L, Carr P, Pilling M, Gardner P et al. (2018). Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis. Plant Physiology 177(1): 151-167.
  • Lacayo CI, Malkin AJ, Holman HY, Chen L, Ding SY et al. (2010). Imaging cell wall architecture in single Zinnia elegans tracheary elements. Plant Physiology 154(1): 121-133.
  • Lavoine N, Desloges I, Dufresne A, Bras J (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers 90(2): 735-764.
  • Lei L, Li S, Gu Y (2012). Cellulose synthase complexes: structure and regulation. Frontiers in Plant Science 3: 1-6. doi:10.3389/ fpls.2012.00075.
  • Leroux O, Bagniewska-Zadworna A, Rambe SK, Knox JP, Marcus SE et al. (2011). Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): histology and taxonomical significance. Annals of Botany 107(2): 195-207.
  • Liu R, Yu H, Huang Y (2005). Structure and morphology of cellulose in wheat straw. Cellulose 12(1): 25-34.
  • Marechal Y, Chanzy H (2000). The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. Journal of Molecular Structure 523(1): 183-196.
  • Mary LN, Robert TOC (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. Journal of Applied Polymer Science 8(3): 1325-1341.
  • Monniaux M, Hay A (2016). Cells, walls, and endless forms. Current Opinion in Plant Biology 34: 114-121.
  • Mutwil M, Debolt S, Persson S (2008). Cellulose synthesis: a complex complex. Current Opinion in Plant Biology 11(3): 252-257.
  • Nelson MR, Band LR, Dyson RJ, Lessinnes T, Wells DM et al. (2012). A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening. New Phytologist 196(4): 1030-1037.
  • Ninan N, Muthiah M, Park I-K, Elain A, Thomas S et al. (2013). Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 98(1): 877-885.
  • Nishiyama Y, Johnson G, French A (2012). Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2): 319- 336.
  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP et al. (2003). Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4): 1013-1017.
  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003). Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114(1): 47-59.
  • Paredez AR, Somerville CR, Ehrhardt DW (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779): 1491-1495.
  • Roberts AW, Frost AO, Roberts EM, Haigler CH (2004). Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements. Protoplasma 224(3-4): 217-229.
  • Rudall PJ (2007). Anatomy of Flowering Plants. New York, NY, USA: Cambridge University Press.
  • Seagull RW (1990). The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159(1): 44-59.
  • Verbelen, Kerstens (2000). Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. Journal of Microscopy 198(2): 101-107.
  • Vukašinović N, Oda Y, Pejchar P, Synek L, Pečenková T et al. (2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytologist 213(3): 1052-1067.
  • Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A et al. (2015). Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350(6257): 198-203.
  • Wightman R, Turner S (2010). Trafficking of the cellulose synthase complex in developing xylem vessels. Biochemical Society Transactions 38(3): 755-760.
  • Wightman R, Turner SR (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. The Plant Journal 54(5): 794-805.
  • Williams JH, McNeilage RT, Lettre MT, Taylor ML (2010). Pollen tube growth and the pollen-tube pathway of Nymphaea odorata (Nymphaeaceae). Botanical Journal of The Linnean Society 162(4): 581-593.
  • Wood PJ (1980). Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Research 85(2): 271-287.
  • Worden N, Park E, Drakakaki G (2012). Trans-Golgi network-an intersection of trafficking cell wall components. Journal of Integrative Plant Biology 54(11): 875-886.
  • Yu H, Liu RG, Shen DW, Jiang Y, Huang Y (2005). Study on morphology and orientation of cellulose in the vascular bundle of wheat straw. Polymer 46(15): 5689-5694.
  • Zimmermann T, Thommen V, Reimann P, Hug HJ (2006). Ultrastructural appearance of embedded and polished wood cell walls as revealed by Atomic Force Microscopy. Journal of Structural Biology 156(2): 363-369.