Wrinkled surface on helical cell wall thickening of vessel elements in flower style
Wrinkled surface on helical cell wall thickening of vessel elements in flower style
In the present study, wrinkled surfaces were discovered on the cell wall thickenings of helical vessels in the lilac style for thefirst time. The structure of the wrinkles was formed by cellulose microfibrils, with convex ridges composed of crystalline cellulose andconcave grooves composed of amorphous cellulose. The cellulose microfibrils were oriented with the helical cell wall thickenings. Thewrinkle morphology was due to the aligned crystalline region of the microfibrils. The wrinkle structure in the flower style might berelated to the faster growth rate of style tissues during helix cell wall thickening development. Discovery of the wrinkled surface couldhelp with the study of the developmental mechanism of helical vessel cells.
___
- Abdul Khalil HPS, Yusra AFI, Bhat AH, Jawaid M (2010). Cell wall
ultrastructure, anatomy, lignin distribution, and chemical
composition of Malaysian cultivated kenaf fiber. Industrial
Crops and Products 31(1): 113-121.
- Alemdar A, Sain M (2008). Isolation and characterization of
nanofibers from agricultural residues: wheat straw and soy
hulls. Bioresource Technology 99(6): 1664-1671.
- Azizi Samir MAS, Alloin F, Dufresne A (2005). Review of recent
research into cellulosic whiskers, their properties and their
application in nanocomposite field. Biomacromolecules 6(2):
612-626.
- Bagniewska-Zadworna A, Arasimowicz-Jelonek M, Smoliński DJ,
Stelmasik A (2014). New insights into pioneer root xylem
development: evidence obtained from Populus trichocarpa
plants grown under field conditions. Annals of Botany 113(7):
1235-1247.
- Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez
J (2014). A specific case in the classification of woods by FTIR
and chemometric: discrimination of Fagales from Malpighiales.
Cellulose 21(1): 261-273.
- Carpita NC (2012). Progress in the biological synthesis of the plant
cell wall: new ideas for improving biomass for bioenergy.
Current Opinion in Biotechnology 23(3): 330-337.
- Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD et al.
(2009). Pausing of Golgi bodies on microtubules regulates
secretion of cellulose synthase complexes in Arabidopsis. The
Plant Cell 21(4): 1141-1154.
- Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H et al.
(2015). Proteomic analysis of microtubule interacting proteins
over the course of xylem tracheary element formation in
Arabidopsis. The Plant Cell 27(10): 2709-2726.
- Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil
F et al. (2008). The shape and size distribution of crystalline
nanoparticles prepared by acid hydrolysis of native cellulose.
Biomacromolecules 9(1): 57-65.
- Gardiner JC, Taylor NG, Turner SR (2003). Control of cellulose
synthase complex localization in developing xylem. The Plant
Cell 15(8): 1740-1748.
- Gotelli MM, Lattar EC, Zini LM, Galati BG (2017). Style morphology
and pollen tube pathway. Plant Reproduction 30(4): 155-170.
- Guerriero G, Fugelstad J, Bulone V (2010). What do we really know
about cellulose biosynthesis in higher plants? Journal of
Integrative Plant Biology 52(2): 161-175.
- Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW
(2009). Arabidopsis cortical microtubules position cellulose
synthase delivery to the plasma membrane and interact with
cellulose synthase trafficking compartments. Nature Cell
Biology 11(7): 797-806.
- Habibi Y, Lucia LA, Rojas OJ (2010). Cellulose nanocrystals:
chemistry, self-assembly, and applications. Chemical Reviews
110(6): 3479-3500.
- Horikawa Y, Sugiyama J (2008). Accessibility and size of Valonia
cellulose microfibril studied by combined deuteration/
rehydrogenation and FTIR technique. Cellulose 15(3): 419-424.
- K.V. Sarkanen CHL (1971). Lignins: Occurrence, Formation, Structure
and Reactions. New York, NY, USA: Wiley Interscience.
- Kacurakova M, Capek P, Sasinkov V, Wellner N, Ebringerov A
(2000). FT-IR study of plant cell wall model compounds: pectic
polysaccharides and hemicelluloses. Carbohydrate Polymers
43(2): 195-203.
- Kataoka Y, Kondo T (1998). FT-IR microscopic analysis of changing
cellulose crystalline structure during wood cell wall formation.
Macromolecules 31(3): 760-764.
- Kerstens S, Verbelen J-P (2003). Cellulose orientation at the surface of
the Arabidopsis seedling: implications for the biomechanics in
plant development. Journal of Structural Biology 144(3): 262-
270.
- Kumar M, Mishra L, Carr P, Pilling M, Gardner P et al. (2018).
Exploiting CELLULOSE SYNTHASE (CESA) class specificity
to probe cellulose microfibril biosynthesis. Plant Physiology
177(1): 151-167.
- Lacayo CI, Malkin AJ, Holman HY, Chen L, Ding SY et al. (2010).
Imaging cell wall architecture in single Zinnia elegans tracheary
elements. Plant Physiology 154(1): 121-133.
- Lavoine N, Desloges I, Dufresne A, Bras J (2012). Microfibrillated
cellulose – Its barrier properties and applications in cellulosic
materials: a review. Carbohydrate Polymers 90(2): 735-764.
- Lei L, Li S, Gu Y (2012). Cellulose synthase complexes: structure
and regulation. Frontiers in Plant Science 3: 1-6. doi:10.3389/
fpls.2012.00075.
- Leroux O, Bagniewska-Zadworna A, Rambe SK, Knox JP, Marcus
SE et al. (2011). Non-lignified helical cell wall thickenings in
root cortical cells of Aspleniaceae (Polypodiales): histology and
taxonomical significance. Annals of Botany 107(2): 195-207.
- Liu R, Yu H, Huang Y (2005). Structure and morphology of cellulose
in wheat straw. Cellulose 12(1): 25-34.
- Marechal Y, Chanzy H (2000). The hydrogen bond network in I-beta
cellulose as observed by infrared spectrometry. Journal of
Molecular Structure 523(1): 183-196.
- Mary LN, Robert TOC (1964). Relation of certain infrared bands to
cellulose crystallinity and crystal lattice type. Part II. A new
infrared ratio for estimation of crystallinity in celluloses I and
II. Journal of Applied Polymer Science 8(3): 1325-1341.
- Monniaux M, Hay A (2016). Cells, walls, and endless forms. Current
Opinion in Plant Biology 34: 114-121.
- Mutwil M, Debolt S, Persson S (2008). Cellulose synthesis: a complex
complex. Current Opinion in Plant Biology 11(3): 252-257.
- Nelson MR, Band LR, Dyson RJ, Lessinnes T, Wells DM et al. (2012).
A biomechanical model of anther opening reveals the roles
of dehydration and secondary thickening. New Phytologist
196(4): 1030-1037.
- Ninan N, Muthiah M, Park I-K, Elain A, Thomas S et al. (2013).
Pectin/carboxymethyl cellulose/microfibrillated cellulose
composite scaffolds for tissue engineering. Carbohydrate
Polymers 98(1): 877-885.
- Nishiyama Y, Johnson G, French A (2012). Diffraction from
nonperiodic models of cellulose crystals. Cellulose 19(2): 319-
336.
- Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP et al.
(2003). Periodic disorder along ramie cellulose microfibrils.
Biomacromolecules 4(4): 1013-1017.
- Palanivelu R, Brass L, Edlund AF, Preuss D (2003). Pollen tube
growth and guidance is regulated by POP2, an Arabidopsis
gene that controls GABA levels. Cell 114(1): 47-59.
- Paredez AR, Somerville CR, Ehrhardt DW (2006). Visualization of
cellulose synthase demonstrates functional association with
microtubules. Science 312(5779): 1491-1495.
- Roberts AW, Frost AO, Roberts EM, Haigler CH (2004). Roles
of microtubules and cellulose microfibril assembly in the
localization of secondary-cell-wall deposition in developing
tracheary elements. Protoplasma 224(3-4): 217-229.
- Rudall PJ (2007). Anatomy of Flowering Plants. New York, NY, USA:
Cambridge University Press.
- Seagull RW (1990). The effects of microtubule and microfilament
disrupting agents on cytoskeletal arrays and wall deposition in
developing cotton fibers. Protoplasma 159(1): 44-59.
- Verbelen, Kerstens (2000). Polarization confocal microscopy and
Congo Red fluorescence: a simple and rapid method to
determine the mean cellulose fibril orientation in plants.
Journal of Microscopy 198(2): 101-107.
- Vukašinović N, Oda Y, Pejchar P, Synek L, Pečenková T et al. (2017).
Microtubule-dependent targeting of the exocyst complex
is necessary for xylem development in Arabidopsis. New
Phytologist 213(3): 1052-1067.
- Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar
A et al. (2015). Visualization of cellulose synthases in
Arabidopsis secondary cell walls. Science 350(6257): 198-203.
- Wightman R, Turner S (2010). Trafficking of the cellulose synthase
complex in developing xylem vessels. Biochemical Society
Transactions 38(3): 755-760.
- Wightman R, Turner SR (2008). The roles of the cytoskeleton during
cellulose deposition at the secondary cell wall. The Plant
Journal 54(5): 794-805.
- Williams JH, McNeilage RT, Lettre MT, Taylor ML (2010). Pollen
tube growth and the pollen-tube pathway of Nymphaea
odorata (Nymphaeaceae). Botanical Journal of The Linnean
Society 162(4): 581-593.
- Wood PJ (1980). Specificity in the interaction of direct dyes with
polysaccharides. Carbohydrate Research 85(2): 271-287.
- Worden N, Park E, Drakakaki G (2012). Trans-Golgi network-an
intersection of trafficking cell wall components. Journal of
Integrative Plant Biology 54(11): 875-886.
- Yu H, Liu RG, Shen DW, Jiang Y, Huang Y (2005). Study on
morphology and orientation of cellulose in the vascular bundle
of wheat straw. Polymer 46(15): 5689-5694.
- Zimmermann T, Thommen V, Reimann P, Hug HJ (2006).
Ultrastructural appearance of embedded and polished wood
cell walls as revealed by Atomic Force Microscopy. Journal of
Structural Biology 156(2): 363-369.