Study of seed coat microsculpture organization during seed development in Zygophyllum fabago (Zygophyllaceae)

Study of seed coat microsculpture organization during seed development in Zygophyllum fabago (Zygophyllaceae)

The ontogeny of seed coat and endosperm tissue in Zygophyllum fabago L. was studied to determine their developmentalimportance using different histochemical and microscopic techniques. Our results revealed that the ovule of Z. fabago was of theanatropous and bitegmic type. The inner epidermis cells were retained up to the end of seed development, whereas the other layers wereremoved in the early stages. Moreover, the outer integument was changed into the seed coat sculptures during the seed development.Concurrently, multiple cytoplasmic strings were formed at the seed coat cells. Fluorescence microscopic analysis indicated that calloseand polyphenols were laid down at these strings. In the late stages of the seed development, the nucleus and cytoplasm of the cells weredegenerated and the sculptures became obvious on the seed coat. The seed coat sculptures may play a role in the seed dispersal by wind.During the early developmental stages, the endosperm was of the nuclear type and then changed into the cellular type. Cytochemicaltests indicated that in the later stages of seed development, the formation of starch grains and the thickening of cell walls occurred,causing considerable reduction of cell cavities as well as hardening the tissue. The cell storage in the endosperm tissue was more lipidbased than protein-based. Generally, due to the degeneration of the outer integument and the existence of the thin inner integument,the endosperm cell wall seemed to be thickened to protect the embryo and to save carbohydrates. The obtained results shed more lighton the development of seed tissues in the family Zygophillaceae

___

  • Batygyina TB (2006). Embryology of Flowering Plants. Boca Raton, FL, USA: CRC Press.
  • Behnke HD, Hummel E, Hillmer S, Sauer-Gurth H, Gonzalez J (2013). A revision of African Velloziaceae based on leaf anatomy characters and rbcL nucleotide sequences. Botanical Journal of the Linnean Society 172 (1): 22-94. doi: 10.1111/boj.12018
  • Bellstedt DU, Van-Zyl L, Marais EM, Bytebier B, De-Villiers CA (2008). Phylogenetic relationships, character evolution and biogeography of southern African members of Zygophyllum (Zygophyllaceae) based on three plastid regions. Molecular Phylogenetics and Evolution 47 (3): 932-949. doi: 10.1016/j. ympev.2008.02.019
  • Creff A, Brocard L, Ingram G (2015). A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nature Communications 6 (2): 63-82. doi: 10.1038/ ncomms7382
  • Erdemoglum N, Kusmenoglu S (2003). Fatty acid composition of Zygphyllum fabago seeds. Chemistry of Natural Compounds 39 (6): 595-596. doi: 10.1023/B:CONC.0000018118.52743.a8
  • Figueiredo DD, Kohler C (2016). Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. Current Opinion in Plant Biology 29 (4): 16-20. doi: 10.1016/j.pbi.2015.10.008.
  • Fredes M, Muoz C, Prat L, Torres F, Saez P et al. (2016). Seed morphology and anatomy of Rubus geoides Sm. Chilian journal Agricultural Research 76 (1): 385-389. doi: 10.4067/S0718- 58392016000300018
  • Gahan PB (1984). Plant Histochemisry and Cytochemistry. London, UK: Academic Press.
  • Galek R, Kozak B, Biela A, Zalewskid D, Sawickasienkiewize E (2016). Seed coat thickness differentiation and genetic polymorphism for Lupinus mutabilis Sweet breeding. Turkish Journal of Field Crops 21 (2): 305-312. doi: 10.17557/tjfc.99967
  • Ghazanfar Sh, Osborne J (2015). Typification of Zygophyllum propinquum Decne. and Z. coccineum. (Zygophyllaceae) and a key to Tetraena in SW Asia. Kew Bulletin 70 (2): 1-9. doi: 10.1007/s12225-015-9588-3
  • Ilarslan H, Palmer RG, Horner HT (2001). Calcium oxalate crystals in developing seeds of soybean. Annals of Botany 88 (3): 243- 257. doi: 10.1006/anbo.2001.1453
  • Jensen WA (1962). Botanical Histochemistry. San Francisco, CA, USA: Freeman, W.H. and Company.
  • Khan SS, Khan A, Khan A, Wadood A, Farooq U et al. (2014). Urease inhibitory activity of ursane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. Phytomedicine 21(3): 379-382. doi: 10.1016/j.phymed.2013.09.009
  • Lersten N. R (2004). Flowering Plant Embryology. Hooboken, NJ, USA: Blackwell Publishing. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T (2015). Reporters for sensitive and quantitative measurement of auxin response. Nature Methods 12 (4): 207-210. doi: 10.1038/nmeth.3279
  • Moise JA, Han S, Gudynaite-savitch L, Johnsen DA, Miki BLA (2005). Seed coat: structure, development, composition and biotechnology. In Vitro Cell Developmental Biology-Plant 41 (4): 620-644. doi: 10.1079/IVP2005686
  • Movafeghi A, Dadpour MR, Naghiloo S, Farabi S, Omidi Y (2010). Floral development in Astragalus caspicus Bieb. (Leguminosae: Papilionoideae: Galegeae). Flora: Morphology, Distribution, Functional Ecology of Plants 205 (4): 251-258. doi: 10.1016/j. flora.2009.04.001
  • Nath D, Dasgupta T (2015). Study of some Vigna species following scanning electron microscopy (SEM). International Journal of Scientific and Research Publications 5 (1): 1-6.
  • Nishawar J, Mahboob-ul-Hussain, Khurshid IA (2008). Programmed cell death or apoptosis: Do animals and plants share anything in common. Biotechnology Molecular Biology Reviews 3 (5): 111-126.
  • Oriani A, Scatena VL (2014). Ovule, fruit and seed development in Abolboda (Xyridaceae, Poales): implications for taxonomy and phylogeny. Botanical Journal of the Linnean Society 175 (2): 144-154. doi: 10.1111/boj.12152
  • Patil P, Malik SK, Sutar S, Yadav SR, John J (2015). Taxonomic importance of seed macro- and micro-morphology in Abelmoschus (Malvaceae). Nordic Journal Botany 33 (3): 696- 707. doi: 10.1111/njb.00771
  • Queiroz RT, De AM, Tozzi GA, Lewis GP (2013). Seed morphology: An addition to the taxonomy of Tephrosia (Leguminosae Papilionoideae, Millettieae) from South America. Plant Systematics and Evolution 299 (10): 459-470. doi: 10.1007/ s00606-012-0735-0
  • Salimpour F, Mostafavi G, Sharifnia F (2007). Micromorphologic study of the seed of the genus Trifolium, section Lotoidea, in Iran. Pakistan Journal of Biological Sciences 10 (3): 378-382. doi: 10.3923/pjbs.2007.378.382
  • Schenk JJ, Hodgson W, Hufford L (2013). Mentzelia canyonensis sp. nov.: a new species endemic to the Grand Canyon, Arizona, USA. Brittonia 65 (4): 408-416.
  • Semerdjieva IB, Yankova-Tsvetkova E (2017). Pollen and seed morphology of Zygophyllum fabago and Peganum harmala (Zygophyllaceae) from Bulgaria. Phyton 86 (2): 318-324.
  • Sousa-Baena M, De Meneze N (2014). Seed coat development in Velloziaceae: Primary homology assessment and insight on seed coat evolution. American Journal of Botany 101 (2): 1409- 1422. doi: 10.3732/ajb.1400364
  • Szkudlarz P, Celka Z (2016). Morphological characters of the seed coat in selected species of the genus Hypericum L. and their taxonomic value. Biodiversity Research and Conservation 44 (4): 1-9. doi: 10.1515/biorc-2016-0022
  • Takahashi Y, Somta P, Muto C, Iseki K, Naito K (2016). Novel genetic resources in the genus Vigna unveiled from Gene Bank accessions. PLoS ONE 11, e0147568. doi: 10.1371/journal. pone.0147568
  • Terziyski D (1981). SEM microscopy-problems, application, prospects for development in the biological sciences in the country. Scientific Works Agricultural Institute, Plovdiv 26 (2): 115-121.
  • Tsou CH, Mori SA (2002). Seed coat anatomy and its relationship to seed dispersal in subfamily Lecythioideae of the Lecythidaceae (the Brazil Nut family). Botanical Bulletin Academie Science 43 (2): 37-56.
  • Umdale SD, Aitawade MM, Gaikwad NB, Madhavan L, Yadav SR (2017). Pollen morphology of asian Vigna species (Genus Vigna; Subgenus Ceratotropis) from India and its taxonomic implications. Turkish Journal of Botany 41 (1): 75-81. doi: 10.3906/bot-1603-31
  • Voiniciuc C, Yang B, Heinrich-Wilhelm Schmidt M, Günl M, Usadel B (2015). Starting to gel: How Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. International Journal of Molecular Sciences 16 (2): 3452-3473. doi: 10.3390/ ijms16023452
  • Weijers D, Wagner D (2016). Transcriptional responses to the auxin hormone. Annual Review of Plant Biology 67 (5): 539-574. doi: 10.1146/annurev-arplant-043015-112122
  • Wu Sh, Lin L, Li H, Yu Sh, Zhang L (2015). Evolution of asian interior arid-zone biota: evidence from the diversification of asian Zygophyllum (Zygophyllaceae). PLoS ONE 10 (3): 1-17. doi: 10.1371/journal.pone.0138697
  • Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011). Proteomic analysis of seed germination under salt stress in soybeans. Journal of Zhejiang University Science 12 (2): 507-517. doi: 10.1631/jzus. B1100061
  • Yaripour S, Delnavazi MR, Asgharian P, Valiyari S, Tavakoli S et al. (2017). A survey on phytochemical composition and biological activity of Zygophyllum fabago from Iran. Advanced Pharmaceutical Bulletin 7 (2): 109-114. doi: 10.15171/ apb.2017.014
  • Zeng CL, Wu XM, Wang JB (2006). Seed coat development and its evolutionary implication in diploid and amphidiploid brassica species. Acta Biologica Cracoviensia Series Botanica 48 (1): 15- 22. doi: 10.1093/aob/mch080
  • Zhang F, Fu PCh, Gao CB, Chen ShL (2013). Comparative study on plant seed morphological characteristics of Zygophyllaceae and two new families separated from it. Plant Diversity and Resources 35 (1): 280-284.