Study of seed coat microsculpture organization during seed development in Zygophyllum fabago (Zygophyllaceae)
Study of seed coat microsculpture organization during seed development in Zygophyllum fabago (Zygophyllaceae)
The ontogeny of seed coat and endosperm tissue in Zygophyllum fabago L. was studied to determine their developmentalimportance using different histochemical and microscopic techniques. Our results revealed that the ovule of Z. fabago was of theanatropous and bitegmic type. The inner epidermis cells were retained up to the end of seed development, whereas the other layers wereremoved in the early stages. Moreover, the outer integument was changed into the seed coat sculptures during the seed development.Concurrently, multiple cytoplasmic strings were formed at the seed coat cells. Fluorescence microscopic analysis indicated that calloseand polyphenols were laid down at these strings. In the late stages of the seed development, the nucleus and cytoplasm of the cells weredegenerated and the sculptures became obvious on the seed coat. The seed coat sculptures may play a role in the seed dispersal by wind.During the early developmental stages, the endosperm was of the nuclear type and then changed into the cellular type. Cytochemicaltests indicated that in the later stages of seed development, the formation of starch grains and the thickening of cell walls occurred,causing considerable reduction of cell cavities as well as hardening the tissue. The cell storage in the endosperm tissue was more lipidbased than protein-based. Generally, due to the degeneration of the outer integument and the existence of the thin inner integument,the endosperm cell wall seemed to be thickened to protect the embryo and to save carbohydrates. The obtained results shed more lighton the development of seed tissues in the family Zygophillaceae
___
- Batygyina TB (2006). Embryology of Flowering Plants. Boca Raton,
FL, USA: CRC Press.
- Behnke HD, Hummel E, Hillmer S, Sauer-Gurth H, Gonzalez J
(2013). A revision of African Velloziaceae based on leaf anatomy
characters and rbcL nucleotide sequences. Botanical Journal of
the Linnean Society 172 (1): 22-94. doi: 10.1111/boj.12018
- Bellstedt DU, Van-Zyl L, Marais EM, Bytebier B, De-Villiers CA
(2008). Phylogenetic relationships, character evolution and
biogeography of southern African members of Zygophyllum
(Zygophyllaceae) based on three plastid regions. Molecular
Phylogenetics and Evolution 47 (3): 932-949. doi: 10.1016/j.
ympev.2008.02.019
- Creff A, Brocard L, Ingram G (2015). A mechanically sensitive cell
layer regulates the physical properties of the Arabidopsis seed
coat. Nature Communications 6 (2): 63-82. doi: 10.1038/
ncomms7382
- Erdemoglum N, Kusmenoglu S (2003). Fatty acid composition of
Zygphyllum fabago seeds. Chemistry of Natural Compounds 39
(6): 595-596. doi: 10.1023/B:CONC.0000018118.52743.a8
- Figueiredo DD, Kohler C (2016). Bridging the generation gap:
communication between maternal sporophyte, female
gametophyte and fertilization products. Current Opinion in
Plant Biology 29 (4): 16-20. doi: 10.1016/j.pbi.2015.10.008.
- Fredes M, Muoz C, Prat L, Torres F, Saez P et al. (2016). Seed
morphology and anatomy of Rubus geoides Sm. Chilian journal
Agricultural Research 76 (1): 385-389. doi: 10.4067/S0718-
58392016000300018
- Gahan PB (1984). Plant Histochemisry and Cytochemistry. London,
UK: Academic Press.
- Galek R, Kozak B, Biela A, Zalewskid D, Sawickasienkiewize E (2016).
Seed coat thickness differentiation and genetic polymorphism
for Lupinus mutabilis Sweet breeding. Turkish Journal of Field
Crops 21 (2): 305-312. doi: 10.17557/tjfc.99967
- Ghazanfar Sh, Osborne J (2015). Typification of Zygophyllum
propinquum Decne. and Z. coccineum. (Zygophyllaceae) and
a key to Tetraena in SW Asia. Kew Bulletin 70 (2): 1-9. doi:
10.1007/s12225-015-9588-3
- Ilarslan H, Palmer RG, Horner HT (2001). Calcium oxalate crystals
in developing seeds of soybean. Annals of Botany 88 (3): 243-
257. doi: 10.1006/anbo.2001.1453
- Jensen WA (1962). Botanical Histochemistry. San Francisco, CA,
USA: Freeman, W.H. and Company.
- Khan SS, Khan A, Khan A, Wadood A, Farooq U et al. (2014). Urease
inhibitory activity of ursane type sulfated saponins from the
aerial parts of Zygophyllum fabago Linn. Phytomedicine 21(3):
379-382. doi: 10.1016/j.phymed.2013.09.009
- Lersten N. R (2004). Flowering Plant Embryology. Hooboken, NJ,
USA: Blackwell Publishing.
Liao CY, Smet W, Brunoud G,
Yoshida S, Vernoux T (2015). Reporters
for sensitive and quantitative measurement of auxin response.
Nature Methods 12 (4): 207-210. doi: 10.1038/nmeth.3279
- Moise JA, Han S, Gudynaite-savitch L, Johnsen DA, Miki BLA
(2005). Seed coat: structure, development, composition and
biotechnology. In Vitro Cell Developmental Biology-Plant 41
(4): 620-644. doi: 10.1079/IVP2005686
- Movafeghi A, Dadpour MR, Naghiloo S, Farabi S, Omidi Y (2010).
Floral development in Astragalus caspicus Bieb. (Leguminosae:
Papilionoideae: Galegeae). Flora: Morphology, Distribution,
Functional Ecology of Plants 205 (4): 251-258. doi: 10.1016/j.
flora.2009.04.001
- Nath D, Dasgupta T (2015). Study of some Vigna species following
scanning electron microscopy (SEM). International Journal of
Scientific and Research Publications 5 (1): 1-6.
- Nishawar J, Mahboob-ul-Hussain, Khurshid IA (2008). Programmed
cell death or apoptosis: Do animals and plants share anything
in common. Biotechnology Molecular Biology Reviews 3 (5):
111-126.
- Oriani A, Scatena VL (2014). Ovule, fruit and seed development in
Abolboda (Xyridaceae, Poales): implications for taxonomy and
phylogeny. Botanical Journal of the Linnean Society 175 (2):
144-154. doi: 10.1111/boj.12152
- Patil P, Malik SK, Sutar S, Yadav SR, John J (2015). Taxonomic
importance of seed macro- and micro-morphology in
Abelmoschus (Malvaceae). Nordic Journal Botany 33 (3): 696-
707. doi: 10.1111/njb.00771
- Queiroz RT, De AM, Tozzi GA, Lewis GP (2013). Seed morphology:
An addition to the taxonomy of Tephrosia (Leguminosae
Papilionoideae, Millettieae) from South America. Plant
Systematics and Evolution 299 (10): 459-470. doi: 10.1007/
s00606-012-0735-0
- Salimpour F, Mostafavi G, Sharifnia F (2007). Micromorphologic
study of the seed of the genus Trifolium, section Lotoidea, in
Iran. Pakistan Journal of Biological Sciences 10 (3): 378-382.
doi: 10.3923/pjbs.2007.378.382
- Schenk JJ, Hodgson W, Hufford L (2013). Mentzelia canyonensis sp.
nov.: a new species endemic to the Grand Canyon, Arizona,
USA. Brittonia 65 (4): 408-416.
- Semerdjieva IB, Yankova-Tsvetkova E (2017). Pollen and seed
morphology of Zygophyllum fabago and Peganum harmala
(Zygophyllaceae) from Bulgaria. Phyton 86 (2): 318-324.
- Sousa-Baena M, De Meneze N (2014). Seed coat development in
Velloziaceae: Primary homology assessment and insight on
seed coat evolution. American Journal of Botany 101 (2): 1409-
1422. doi: 10.3732/ajb.1400364
- Szkudlarz P, Celka Z (2016). Morphological characters of the seed
coat in selected species of the genus Hypericum L. and their
taxonomic value. Biodiversity Research and Conservation 44
(4): 1-9. doi: 10.1515/biorc-2016-0022
- Takahashi Y, Somta P, Muto C, Iseki K, Naito K (2016). Novel
genetic resources in the genus Vigna unveiled from Gene Bank
accessions. PLoS ONE 11, e0147568. doi: 10.1371/journal.
pone.0147568
- Terziyski D (1981). SEM microscopy-problems, application,
prospects for development in the biological sciences in the
country. Scientific Works Agricultural Institute, Plovdiv 26 (2):
115-121.
- Tsou CH, Mori SA (2002). Seed coat anatomy and its relationship to
seed dispersal in subfamily Lecythioideae of the Lecythidaceae
(the Brazil Nut family). Botanical Bulletin Academie Science
43 (2): 37-56.
- Umdale SD, Aitawade MM, Gaikwad NB, Madhavan L, Yadav SR
(2017). Pollen morphology of asian Vigna species (Genus
Vigna; Subgenus Ceratotropis) from India and its taxonomic
implications. Turkish Journal of Botany 41 (1): 75-81. doi:
10.3906/bot-1603-31
- Voiniciuc C, Yang B, Heinrich-Wilhelm Schmidt M, Günl M, Usadel
B (2015). Starting to gel: How Arabidopsis seed coat epidermal
cells produce specialized secondary cell walls. International
Journal of Molecular Sciences 16 (2): 3452-3473. doi: 10.3390/
ijms16023452
- Weijers D, Wagner D (2016). Transcriptional responses to the auxin
hormone. Annual Review of Plant Biology 67 (5): 539-574. doi:
10.1146/annurev-arplant-043015-112122
- Wu Sh, Lin L, Li H, Yu Sh, Zhang L (2015). Evolution of asian interior
arid-zone biota: evidence from the diversification of asian
Zygophyllum (Zygophyllaceae). PLoS ONE 10 (3): 1-17. doi:
10.1371/journal.pone.0138697
- Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011). Proteomic analysis
of seed germination under salt stress in soybeans. Journal of
Zhejiang University Science 12 (2): 507-517. doi: 10.1631/jzus.
B1100061
- Yaripour S, Delnavazi MR, Asgharian P, Valiyari S, Tavakoli S et
al. (2017). A survey on phytochemical composition and
biological activity of Zygophyllum fabago from Iran. Advanced
Pharmaceutical Bulletin 7 (2): 109-114. doi: 10.15171/
apb.2017.014
- Zeng CL, Wu XM, Wang JB (2006). Seed coat development and its
evolutionary implication in diploid and amphidiploid brassica
species. Acta Biologica Cracoviensia Series Botanica 48 (1): 15-
22. doi: 10.1093/aob/mch080
- Zhang F, Fu PCh, Gao CB, Chen ShL (2013). Comparative study on
plant seed morphological characteristics of Zygophyllaceae
and two new families separated from it. Plant Diversity and
Resources 35 (1): 280-284.