Spatio-temporal dynamic of submerged aquatic macrophytes in Lake Sapanca

Spatio-temporal dynamic of submerged aquatic macrophytes in Lake Sapanca

Aquatic macrophytes are one of the key components of freshwater ecosystems and contribute to ecosystem functioning and environmental sustainability. They are assumed to be an ideal biomonitoring tool in long-term monitoring programs implemented by the EU Water Framework Directive due to their sensitivity to environmental factors. Therefore, this study focuses on the evaluation of the ecological status in Lake Sapanca using macrophyte composition and abundance in order to make future predictions on the health of aquatic ecosystems and to form effective management. Submerged macrophyte assemblages related to environmental parameters were investigated from February to November of 2017. A total of 12 submerged macrophyte species were recorded in the littoral zone of the lake. The main findings on the most dominant 7 species of this community indicated significant differences among stations and seasons. They also revealed that submerged macrophyte density was shaped in relation to environmental variables, particularly temperature and nutrients. Submerged macrophyte assemblages reached their highest species number and biomass value (5312 gm(-2)) in summer, while no species was recorded in winter. High biomass values of these species corresponded with lower macrophyte diversity. The macrophyte index results demonstrated that Lake Sapanca is at a critical level in terms of nutrient enrichment. More frequent observation of species such as Ceratophyllum demersum and Elodea canadensis, which indicated "massive" nutrient enrichment, revealed that the ecological status of the lake varies from meso-to eutrophic at the local level.

___

  • Altınsaçlı S, Altınsaçlı S, Temel M (2013). Species composition and qualitative distribution of macrophytes in four lakes (Karasu, Adapazarı, Turkey). Phytologia Balcanica 19 (1): 67-75.
  • APHA, AWWA, WEF (2012). Standard methods for examination of water and wastewater. 22nd ed. Washington, DC, USA: American Public Health Association, pp. 1360.
  • Aykulu G, Albay M, Akçaalan R, Tüfekçi H, Aktan Y (2006). Species composition, abundance and seasonality of phytoplankton in a moderately deep Turkish lake. Nova Hedwigia 130: 325-338.
  • Beck MW, Hatch LK, Vondracek B, Valley RD (2010). Development of a macrophyte-based index of biotic integrity for Minnesota lakes. Ecological Indicators 10: 968-979. doi: 10.1016/j. ecolind.2010.02.006
  • Beishenbekova A (2013). Balıkdamı Gölü makrofit florası (Sivrihisar/ Eskişehir). Ankara Üniversitesi Çevrebilimleri Dergisi 3 (1): 65-72 (in Turkish).
  • Beklioğlu M, Altınayar G, Tan CO (2006). Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie166 (4): 535– 556. doi: 10.1127/0003-9136/2006/0166-0535
  • Bolpagni R (2013). Macrophyte richness and aquatic vegetation complexity of the lake Idro (Northern Italy). Annali di Botanica 3: 35-43. doi: 10.4462/annbotrm-10207
  • Bornette G, Puijalon S(2011). Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1-14. doi: 10.1007/ s00027-010-0162-7
  • Clarke KR, Warwick RM (1994). Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth, UK: PRIMER-E Ltd, pp. 144.
  • Collins CD, Sheldon RB, Boylen CW (1987). Littoral zone macrophyte community structure: distribution and association of species along physical gradients in Lake George, New York, USA. Aquatic Botany 29: 177-194. doi: 10.1016/0304- 3770(87)90095-7
  • Davis PH (1984). Flora of Turkey and the East Aegean Islands, Vol. 8. 1st ed. Edinburgh, Scotland: Edinburgh University Press.
  • Demir N, Köse B (2004). Göllerde sualtı makrofit biyokütlesini etkileyen faktörler. In: I. Ulusal Limnoloji Çalıştayı; Kocaeli, Turkey. p. 16 (in Turkish).
  • Ersoy S, Aktan Y(2019). First report on the occurrence of invasive macrophytes Elodea canadensis Michx. in Sapanca Lake. European Journal of Biology 78 (2): 105-109. doi: 10.26650/ EurJBiol.2019.0018
  • Feldmann T (2012). The structuring role of lake conditions for aquatic macrophyte. PhD, Estonian University of Life Science, Tartu, Estonia.
  • Gecheva G, Yurukova L, Cheshmedjıev S (2013). Patterns of aquatic macrophyte species composition and distribution in Bulgarian rivers. Turkish Journal of Botany 37: 99-110. doi: 10.3906/bot1112-35,
  • Golob A, Gabersick A. Germ M(2015). Presence and abundance of macrophytes in Lake Slivniško jezero. Acta Biologica Slovenica 58: 23-34.
  • Goltermann HL, Clymo RS, Ohnstad MAM (1978). Method for Physical and Chemical Analysis of Freshwaters. IBP.8. Oxford, UK: Blackwell Scientific Publications.
  • Heegaard E (2004). Trends in aquatic macrophyte species turnover in Northern Ireland - which factors determine the spatial distribution of local species turnover? Global Ecology and Biogeography 13: 397-408. doi: 10.1111/j.1466- 822X.2004.00119.x
  • Hilt S, Henschke I, Rücker J, Nixdorf B (2010). Can submerged macrophytes ınfluence turbidity and trophic state in deep lakes? Suggestions from a case study. Journal of Environmental Quality 39: 725-733. doi: 10.2134/jeq2009.0122
  • Hopson MS, Zimba PV (1993). Temporal variation in the biomass of submersed macrophytes in Lake Okeechobee, Florida. Journal of Aquatic Plant Management 31: 76-81.
  • Huotari T, Korpelainen H (2013).Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii. PLoS One 8 (4): e58073. doi: 10.1371/journal.pone.0058073
  • Jeppesen E, Sondergaard M, Christoffersen K (eds.) (1998). The structuring role of submerged macrophytes in lakes. Ecological Studies 131. New York, NY, USA: Springer Science Business Media.
  • Johnson JA, Newman RM (2011). A comparison of two methods for sampling biomass of aquatic plants. Journal of Aquatic Plant Management 49: 1-8.
  • Jones RC, Walti K, Adams MS (1983). Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, USA. Hydrobiologia 107 (3): 213-219. doi: 10.1007/BF00036690
  • Kadono Y (1982). Occurrence of aquatic macrophytes in relation to pH, alkalinity, Ca, Cl, and conductivity. Japanese Journal of Ecology 32: 39-44.
  • Kırım B, Çoban D, Güler M, (2014). Floating aquatic plants and their impact on wetlands in Turkey. In: 2nd International Conference, Water resources and wetlands; Tulcea, Romania. pp. 102-109.
  • Kırkağaç M, Demir N, Topçu A, Fakıoğlu Ö, Zencir Ö (2011). Porsuk Çayı’nda (Eskişehir) sucul makrofitler, zooplankton ve bentik makroomurgasızların incelenmesi. Ankara Üniversitesi Çevrebilimleri Dergisi 3 (1): 65-72 (in Turkish).
  • Kočić A, Horvatić J, Jelaska SD (2014). Distribution and morphological variations of invasive macrophytes Elodea nuttallii (Planch.) H. St. John and Elodea canadensis Michx in Croatia. Acta Botanica Croatica 73 (2): 437-446. doi: 10.2478/ botcro-2014-0011
  • Kohler A (1978). Methoden der Kartierung von Flora und Vegetation von Susswasserbiotopen. Landschaft und Stadt 10: 73-85 (in German).
  • Kolada A, Kutyła S (2016). Elodea canadensis (Michx.) in Polish lakes: a non-aggressive addition to native flora. Biological Invasions 18: 3251-3264. doi: 10.1007/s10530-016-1212-4
  • Melzer A. (1999) Aquatic macrophytes as tools for lake management. In: Harper DM, Brierley B, Ferguson AJD, Phillips G (eds.). The Ecological Bases for Lake and Reservoir Management. Developments in Hydrobiology, Vol. 136. Dordrecht, Netherlands: Springer. doi: 10.1007/978-94-017-3282-6-17
  • Morkoç E, Tuğrul S, Öztürk M, Tüfekçi H, Egesel L et al. (1998). Trophic characteristics of the Sapanca lake (Turkey). Croatica Chemica Acta 71 (2): 303-322.
  • Moss B, Stephen D, Alvarez C, Bécares E, BundWVD et al. (2003). The determination of ecological status in shallow lakes-a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation 13 (6): 507-549. doi: 10.1002/aqc.592
  • Mulderij G, Nes EHV, Donk EV (2007). Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecological Modelling 204 (1-2): 85- 92. doi: 10.1016/j. ecolmodel.2006.12.020
  • Odum P (1971). Fundamentals of Ecology. Philadelphia, PA, USA: WB Saunders Company, pp. 574.
  • Okgerman H. 2008. Sapanca Gölü zooplanktonu. In: Okgerman H, Altuğ G (editors). Sapanca Gölü’ne Bilimsel Açıdan Bakış. TÜDAV Yayınları No. 28. İstanbul, Turkey: Türk Deniz Araştırmaları Vakfı (TÜDAV), pp. 65-74.
  • Özçelik H, Çinbilgel İ, Muca B, Koca A, Tavuç İ et al. (2014). Burdur ili karasal ve iç su ekosistem çeşitliliği, koruma ve izleme çalışmaları. Süleyman Demirel University Faculty of Arts and Science Journal of Science 9 (2): 12-43.
  • Özen AS, Korkmaz Ö (2005). Yedigöller (Kütahya) ekosisteminde biyolojik çeşitlilik ve kirlilik üzerine bir araştırma. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9: 15-26 (in Turkish).
  • Öztürk M, Seçmen Ö, Leblebici E (1996). Eber Gölü (Afyon) bitki örtüsü ve kirlenme ilişkileri. Ekoloji Çevre Dergisi 20: 15-26 (in Turkish).
  • Padial AA, Bini LM, Thomaz SM (2008). The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Brazilian Journal of Biology 68 (4): 1051- 1059. doi: 10.1590/S1519-69842008000500012
  • Penning WE, Dudley B, Mjelde M, Hellsten S, Hanganu J et al. (2008a). Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquatic Ecology 42 (2): 253-264. doi: 10.1007/s10452-008-9183-x
  • Scheffer M (2001). Alternative attractors of shallow lakes. The Scientific World 1: 254-263. doi: 10.1100/tsw.2001.62
  • Schneider SC, Lawniczakb AE, Faltynowiczc P, Szoszkiewiczb K (2012). Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica - Ecology and Management of Inland Waters 42 (3): 204-211. doi: 10.1016/j.limno.2011.12.001
  • Seçmen Ö, Leblebici E (1997). Türkiye Sulak Alan Bitkileri ve Bitki Örtüsü. Ege Üniversitesi, Fen Fakültesi Yayın No: 158. İzmir, Turkey: Ege Üniversitesi Basımevi, p. 450 (in Turkish).
  • Schloesser DW, Manny BA (1984). Rapid qualitative method for estimating the biomass of submersed macrophytes in large water bodies. Journal of Aquatic Plant Management 22: 102- 104.
  • Silva SCA, Cervi AC, Bona C, Padial AA (2014). Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication. Acta Limnologica Brasiliensia 26 (2): 129-142. doi: 10.1590/S2179-975X2014000200004
  • Sondergaard M, Johansson SL, Lauridsen TL, Jorgensen TB, Liboriussen L et al. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893-908. doi: 10.1111/j.1365-2427.2009.02331.x
  • Susamlı S (1998). Mogan Gölü’nde (Ankara) su altı makrofitlerinin balık-zooplankton ilişkisine ve tatlı su kalitesine etkileri. Master’s thesis, Gazi University, Ankara, Turkey (in Turkish).
  • Szoszkiewicz K, Ciecierska H, Kolada A, Schneideet SC (2014). Parameters structuring macrophyte communities in rivers and lakes – results from a case study in North-Central Poland. Knowledge and Management of Aquatic Ecosystems 415 (8)08p1-08p16. doi: 10.1051/kmae/2014034
  • Şanal M, Köse B, Coşkun T, Demir N (2015). Mogan Gölü’nde sucul makrofitlere göre ekolojik kalitenin tahmini. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 (4): 51-55 (in Turkish).
  • Takamura N, Kadono Y, Fukushima M, Nakagawa M, Kim B (2003). Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecological Research 18: 381-395. doi: 10.1046/j.1440-1703.2003.00563.x
  • Temel M (1992). Phytoplankton of Lake Sapanca. Su Ürünleri Dergisi 1: 25-40 (in Turkish).
  • Thomaz SM, Souza, DC, Bini LM (2003). Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505: 119-128. doi: 10.1023/B:HYDR.0000007300.78143.e1
  • Turna II, Yıldırım UG, Durucan F (2010). Eğirdir Gölü’nün görsel su altı flora ve faunası. In: Isparta ili Değerleri ve Değer Yaratma Potansiyeli Sempozyumları; Isparta, Turkey (in Turkish).
  • Van den Berg MS, Scheffer M, Van Nes E, Coops H (1998). The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34: 750-756. doi: 10.1046/j.1529- 8817.1998.340750.x
  • Wetzel RG (1983). Limnology. 2nd ed. Philadelphia, PA, USA: Saunders College Publishing.
  • Wetzel RG, Likens GE (1991). Limnological Analyses. 3rd ed. New York (NY):Springer Science + Business Media Inc. p. 429.
  • Westlake DF (1986). The Direct Determination of Biomass of Aquatic Macrophytes and Measurement of Underwater Light. London, UK: Her Majesty’s Stationery Office, p. 45