Roles of plant CBL–CIPK systems in abiotic stress responses

Roles of plant CBL–CIPK systems in abiotic stress responses

Plants evolved from long-term adaptation to form regulatory mechanisms of perception, transduction, and response to stresses.The CBL–CIPK signaling system is a basic calcium sensor that plays an important role in sensing adverse environmental stimuli. CBLscan perceive and bind Ca2+ under adversity and then specifically interact with CIPKs. The activated CBL–CIPK complex phosphorylatesdownstream target proteins (such as ion channels and transporters), or regulates transcription factors and stress responsive genes.Important progress has been made in the study of CBL–CIPK signaling pathways in response to high salt, low N, low K, high Mg, andhigh pH. This review summarizes the structural features of CBL and CIPK families and the research progress of CBL–CIPK complexesunder environmental stresses, and forecasts the important future direction in studies of the CBL–CIPK signaling system.

___

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Bastistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36: 457-470.
  • Batistic O, Kudla J (2009). Plant calcineurin B-like proteins and their interacting protein kinases. BBA-Mol Cell Res 1793: 985-992.
  • Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J (2008). Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20: 1346-1362.
  • Batistic O, Waadt R, Steinhorst L, Held K, Kudla J (2010). CBLmediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J 61: 211- 222.
  • Chen J, Sun Y, Sun F, Xia X, Yin W (2011). Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1, gene display enhanced tolerance to multiple abiotic stresses. Plant Growth Regul 63: 259-269.
  • Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012). The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot 63: 6211-6222.
  • Chen L, Wang QQ, Zhou L, Ren F, Li DD, Li XB (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40: 4759-4767.
  • Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H (2011). Identification and characterization of putative CIPK genes in maize. J Genet Genomics 38: 77-87.
  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15: 1833-1845.
  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: 223-239.
  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010). Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29: 159-165.
  • Cho JH, Choi MN, Yoon KH, Kim KN (2018). Ectopic expression of SjCBL1, calcineurin B-like 1 gene from Sedirea japonica, rescues the salt and osmotic stress hypersensitivity in Arabidopsis cbl1 mutant. Front Plant Sci 9: 1188.
  • Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdei JL, Sentenac H, Zimmermann S, Gaillard I (2013). Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK–CBL complexes and induced in ripening berry flesh cells. Plant J 73: 1006-1018.
  • Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS (2018). Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18: 93.
  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2009). CLC-mediated anion transport in plant cells. Philos T R Soc B 364: 195-201.
  • de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin GB, del Pozo O (2013). The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell 25: 2748-2764.
  • Deng X, Wei H, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B et al. (2013). TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. Plos One 8: e69881.
  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013). The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6: 559-569.
  • Elphick CH, Sanders D, Maathuis FJM (2001). Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant Cell Environ 24:733-740.
  • Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS et al. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19: 1617-1634.
  • Fujii H, Zhu J (2009). An autophosphorylation site of the protein kinase SOS2 is important for salt tolerance in Arabidopsis. Mol Plant 2: 183-190.
  • Gao C, Zhao Q, Jiang L (2015). Vacuoles protect plants from high magnesium stress. P Natl Acad Sci USA 112: 2931-2932.
  • Giong HK, Moon S, Jung KH (2015). A systematic view of the rice calcineurin B-like protein interacting protein kinase family. Genes Genom 37: 55-68.
  • Gong D, Guo Y, Schumaker KS, Zhu JK (2004). The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134: 919-926.
  • Greco M, Chiappetta A, Bruno L, Bruno L, Bitontic MB (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot 63: 695-709.
  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13: 1383-1400.
  • Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16: 435-449.
  • Gutiérrez-Beltrán E, Personat JM, Torre FDL, Pozo OD (2017). A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiol 173: 836-852.
  • Halfter U, Ishitani M, Zhu JK (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3. P Natl Acad Sci USA 97: 3735-3740.
  • Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, CorratgéFaillie C, Offenborn LN, Lacombe B, Dreyer I, Thibaud JB et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116.
  • Ho CH, Lin SH, Hu HC, Tsay YF (2009). CHL1 functions as a nitrate sensor in plants. Cell 138: 1184-1194.
  • Hu HC, Wang YY, Tsay YF (2009). AtCIPK8, CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57: 264-278.
  • Hu W, Xia Z, Yan Y, Ding Z, Tie W, Wang L, Zou M, Wei Y, Lu C, Hou X et al. (2015). Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front Plant Sci 6: 914.
  • Huang C, Ding S, Zhang H, Du H, An L (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci 181: 57-64.
  • Imamura M, Takahashi YT, Nakamura N, Sin Htwe NMP, Zheng SH, Shimozaki KI (2008). Isolation and characterization of a cDNA coding cowpea (Vigna unguiculata (L.) Walp.) calcineurin B-like protein-interacting protein kinase, VuCIPK1. Plant Biotechnol-NAR 25: 437-445.
  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667-1678.
  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52: 473-484.
  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15: 411-423.
  • Kimura S, Kawarazaki T, Nibori H, Michikawa M, Imai A, Kaya H, Kuchitsu K (2012). The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153: 191-195.
  • Kleist TJ, Spencley AL, Luan S (2014). Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages. Front Plant Sci 5: 187.
  • Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL–CIPK signaling networks. Plant Physiol 134: 43-58.
  • Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011). Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Mol Plant 04: 527-536.
  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan, S (2007). A protein phosphorylation/ dephosphorylation network regulates a plant potassium channel. P Natl Acad Sci USA 104: 15959-15964.
  • Li J, Jiang M, Ren L, Liu Y, Chen H (2016). Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Mol Genet Genomics 291: 1769-1781.
  • Li L, Kim BG, Yong HC, Pandey GK, Luan S (2006). A Ca2 signaling pathway regulates a K⁺ channel for low-K response in Arabidopsis. P Natl Acad Sci USA 103: 12625-12630.
  • Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J (2012). HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35: 1582-1600.
  • Li RF, Zhang JW, Wei JH, Wang H, Wang Y, Ma R (2009). Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress. Prog Nat Sci 19: 667-676.
  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007). Dissection of the AtNRT2.1:AtNRT2.2 inducible highaffinity nitrate transporter gene cluster. Plant Physiol 143: 425- 433.
  • Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC, Ma Y (2013). The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 14: 701-713.
  • Liu J, Zhu J (1997). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. P Natl Acad Sci USA 94: 14960-14964.
  • Liu J, Zhu JK (1998). A calcium sensor homolog required for plant salt tolerance. Science 280: 1943-1945.
  • Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH (2013). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiol 161: 266-277.
  • Liu P, Duan Y, Liu C, Xue Q, Guo J, Qi T, Kang Z, Guo J (2018). The calcium sensor TaCBL4 and its interacting protein TaCIPK5 are required for wheat resistance to stripe rust fungus. J Exp Bot 69: 4443-4457.
  • Liu WZ, Deng M, Li L, Yang B, Li H, Deng H, Jiang YQ (2015). Rapeseed calcineurin B-like protein CBL4, interacting with CBL-interacting protein kinase CIPK24, modulates salt tolerance in plants. Biochem Bioph Res Co 467: 467-471.
  • Liu Z, Li X, Sun F, Zhou T, Zhou Y (2017). Overexpression of OsCIPK30 enhances plant tolerance to rice stripe virus. Front Microbiol 8: 2322.
  • Lu CA, Lim EK, Yu SM (1998). Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Biol Chem 273: 10120-10131.
  • Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G (2017). BdCIPK31, a calcineurin B-like proteininteracting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci 8: 1184.
  • Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Yang G, He G (2018). Ectopic expression of BdCIPK31 confers enhanced lowtemperature tolerance in transgenic tobacco plants. Acta Bioch Bioph Sin 50: 199-208.
  • Mahs A, Steinhorst L, Han JP, Shen LK, Wang Y, Kudla J (2013). The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Mol Plant 6: 1149-1162.
  • Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, Luan S (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17: 411-421.
  • Pandey GK, Kanwar P, Pandey A (2014). Global Comparative Analysis of CBL-CIPK Gene Families in Plants; Springer Briefs in Plant Science: New York, USA, pp. 25-70.
  • Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal SK, Kim BG, Lee SC et al. (2015). Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 169: 780-792.
  • Park HJ, Kim WY, Yun DJ (2013). A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance. Plant Signaling & Behavior 8: e24820.
  • Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM et al. (2010). OsCIPK31, a CBLinteracting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30: 19-27.
  • Qin Y, Li X, Guo M, Deng K, Lin J, Tang D, Guo X, Liu X (2008). Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis. Sci China Ser C 51: 391-401.
  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. P Natl Acad Sci USA 99: 8436-8441.
  • Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279: 207-215.
  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007). SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19: 1415-1431.
  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. P Natl Acad Sci USA 99: 9061-9066.
  • Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, NievesCordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ et al. (2015). CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol 169: 2863.
  • Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J 74: 258- 266.
  • Roy SJ, Huang W, Wang XJ, Evrard A, Schmöckel SM, Zafar ZU, Tester M (2013). A novel protein kinase involved in Na(+), exclusion revealed from positional cloning. Plant Cell Environ 36: 553-568.
  • Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A (2005). The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345: 1253-1264.
  • Sanchez-Barrena MJ, Fujii H, Angulo I, Martinez-Ripoll M, Zhu JK, Albert A (2007). The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26: 427-435.
  • Sánchez-Barrena MJ, Martínez-Ripoll M, Albert A (2013). Structural biology of a major signaling network that regulates plant abiotic stress: the CBL-CIPK mediated pathway. Int J Mol Sci 14: 5734-5749.
  • Sardar A, Nandi AK, Chattopadhyay D (2017). CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. J Exp Bot 68: 3573-3584.
  • Shi H, Ishitani M, Kim C, Zhu JK (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. P Natl Acad Sci USA 97: 6896-6901.
  • Snedden WA, Fromm H (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151: 35-66.
  • Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G (2015). Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol 15: 269.
  • Tang RJ, Luan S (2017). Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr Opin Plant Biol 39: 97-105.
  • Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S (2015). Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. P Natl Acad Sci USA 112: 3134-3139.
  • Tester M, Davenport R (2003). Na+ tolerance and Na+ transport in higher plants. Ann Bot-London 91: 503-527.
  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58: 778-790.
  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713.
  • Vert G, Chory J (2009). A toggle switch in plant nitrate uptake. Cell 138: 1064-1066.
  • Wang JJ, Lu XK, Yin ZJ, Mu M, Zhao XJ, Wang DL, Wang S, Fan WL, Guo LX, Ye WW et al. (2016). Genome-wide identification and expression analysis of CIPK genes in diploid cottons. Genet Mol Res 15: gmr15048852.
  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012). Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79: 123-135.
  • Wang Y, Sun T, Li T, Wang M, Yang G, He G (2016). A CBLinteracting protein kinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS One 11: e167962.
  • Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G (2017). A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Bioch 123: 103-113.
  • Weinl S, Kudla J (2009). The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184: 517-528.
  • Wu SJ, Ding L, Zhu JK (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617-627.
  • Xi Y, Liu J, Dong C, Cheng ZM (2017). The CBL and CIPK gene family in grapevine (Vitis vinifera): genome-wide analysis and expression profiles in response to various abiotic stresses. Front Plant Sci 8: 978.
  • Xiang Y, Huang Y, Xiong L (2007). Characterization of stressresponsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144: 1416-1428.
  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360.
  • Xue G, Lu LM, Yang TZ, Li XH, Xing XX, Xu SX (2015). Enhanced tolerance to low-K+ stress in tobacco plants, that ectopically express the CBL-interacting protein kinase CIPK23 gene. Czech J Genet Plant 52: 77-82.
  • Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008). Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35: 531-543.
  • Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS et al. (2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22: 1313- 1332.
  • Yuasa T, Ishibashi Y, Iwaya-Inoue M (2012). A flower specific calcineurin B-like molecule (CBL)-interacting protein kinase (CIPK) homolog in tomato cultivar micro-tom (Solanum lycopersicum L.). American Journal of Plant Sciences 3: 753- 763.
  • Ye J, Zhang W, Guo Y (2013). Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Rep 32: 139-148.
  • Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y (2017). Genomewide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa). Front Plant Sci 8: 1191.
  • Yong HC, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15: 1833-1845.
  • Yu Y, Xia X, Yin W, Zhang H. (2007). Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52: 101-110.
  • Zhang C, Ge R, Zhang J, Chen Y, Wang H, Wei J, Li R (2015). Identification and expression analysis of a novel HbCIPK2- interacting ferredoxin from halophyte H. brevisubulatum. PLoS one 10: e0144132.
  • Zhang H, Lv F, Han X, Xia X, Yin W (2013). The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep 32: 611-621.
  • Zhang H, Yang B, Liu W, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y (2014). Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14: 8.
  • Zhang H, Yin W, Xia X (2008). Calcineurin B-like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul 56: 129-140.
  • Zhang X, Köster P, Schlücking K, Balcerowicz D, Hashimoto K, Kuchitsu K, Balcerowicz D, Hashimoto K, Kuchitsu K, Vissenberg K et al. (2018). CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett 592: 2582-2593.
  • Zhang Y, Linghu J, Wang D, Liu X, Yu A, Li F, Zhao J, Zhao T (2017). Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance. Plant Mol Biol Rep 35: 634-646.
  • Zhao Y, Wang T, Zhang W, Li X (2011). SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol 189: 1122-1134.
  • Zhou J, Wang JJ, Bi Y.F, Wang LK, Tang LZ, Yu X, Ohtani M, Demura T, Zhuge Q (2014). Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol Rep 32: 185- 197.
  • Zhu JK (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273.
  • Zhu JK (2003). Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445.
  • Zhu JK, Liu J, Xiong L (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10: 1181-1191.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Alejandro SANTIAGO, Oussama AHRAZEM, Lourdes GÓMEZ-GÓMEZ, Miguel ángel COPETE, Raquel HERRANZ, Pablo FERRANDIS

Seed germination requirements of relictic and broadly-distributed populations of Chaerophyllum aureum (Apiaceae): connecting ecophysiology and genetic identity

Oussama AHRAZEM, Lourdes GÖMEZ-GÖMEZ, Miguel A. COPETE, Alejandro SANTIAGO, Raquel HERRANZ, Pablo FERRANDIS

Cengiz YILDIRIM, Erkan YALÇIN, Arzu CANSARAN, Hasan KORKMAZ

Improvement of biomass production in transgenic Melia azedarach L. plants by the expression of a GA20-oxidase gene

Phat Tien DO, Nhung Hong NGUYEN, Phong Van NGUYEN, Ngoc Bich PHAM, Thao Phuong BUI, Linh Khanh LY, Quang Ho TRAN, Ha Hoang CHU

Hybridization among three Cirsium (Asteraceae) species and important evidence for three new hybrids from Turkey

Sevcan ÇELENK, Gülnar İSMAILOVA, Bayram YILDIZ, Tuncay DİRMENCİ, Taner ÖZCAN, Turan ARABACI

Thao Phuong BUI, Linh Khanh LY, Phat Tien DO, Nhung Hong NGUYEN, PHONG VAN NGUYEN, Quang Ho TRAN, Ngoc Bich PHAM, HA HOANG CHU

Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities

Nuri YILMAZ, Gürkan DEMİRKOL

Epiphytic diatoms as bioindicators of trophic status of Lake Modrac (Bosnia and Herzegovina)

Mirela HABIBOVIC, Jasmina KAMBEROVIC, Zorana LUKIC, Vedran STUHLI, Emina MESIKIC

Effect of some immunomodulators and zeatin on susceptibility of wheat to powdery mildew

Alexander BABOSHA

Syntaxonomic analysis of forests, shrubs, and steppes of Tavşan Mountain (Amasya, Turkey)

Erkan YALÇIN, Hasan KORKMAZ, Cengiz YILDIRIM, Arzu CANSARAN