Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities

Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities

The objective of this study was to assess morphological and genetic diversities of 48 forage pea landraces collected fromdifferent locations at different altitudes in Turkey. Morphological, quality, and yield features were determined for the landraces and threecontrol cultivars in three subsequent years. Genetic diversities of the landraces and cultivars were also monitored using microsatellite(SSR) markers. Our results revealed that the features of landraces are significantly different. The hay weights and the relative feed valueswere found to be significantly affected by altitude, with the landraces generally showing significantly higher hay weight and relative feedvalues at lower altitudes (P < 0.05). At the genetic level, 32 SSR primers led to distinct placement of one of the samples into a differentclade of the dendrogram, showing that it is genetically different from the other 47 samples. This genetically different landrace had thehighest forage value, suggesting that it shows higher prime forage features than the cultivars and the other landraces. Moreover, altitudeand generally flower color were found to be important factors affecting the genetics of the landraces, as the landraces having whiteflowers or collected at similar altitudes were clustered well in the dendrogram. The results of this study reveal that the morphologicaland genetic diversities of forage pea landraces collected from different locations at different altitudes show variations. Such informationcould be used to develop forage pea landraces with improved characters that can be used in hay management.

___

  • Acar Z, Kumbasar F, Ayan I, Can M, Tuzen E et al. (2016). Is it possible to develop dormancy groups for Bituminaria bituminosa L.? In: Options Méditerranéennes Series A: Mediterranean Seminars; Zaragoza, Spain. p. 209.
  • Açıkgöz E (2001). Yem Bitkileri. 1st ed. Bursa, Turkey: Uludağ University Press (in Turkish).
  • Ahmad S, Kaur S, Lamb-Palmer ND, Lefsrud M, Singh J (2015). Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content. Crop Journal 3 (3): 238-245. doi: 10.1016/j.cj.2015.03.005
  • Asci O, Acar Z, Arici YK (2015). Hay yield, quality traits and interspecies competition of forage pea-triticale mixtures harvested at different stages. Turkish Journal of Field Crops 20 (2): 166-173. doi: 10.17557/tjfc.83484
  • Baloch FS, Alsaleh A, Miera LES, Hatipoğlu R, Çiftçi V et al. (2015). DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochemical Systematics and Ecology 61 (1): 244- 252. doi: 10.1016/j.bse.2015.06.017
  • Bouhadida M, Srarfi F, Saadi I, Kharrat M (2013). Molecular characterization of pea (Pisum sativum L.) using microsatellite markers. Journal of Applied Chemistry 5 (1): 57-61. doi: 10.9790/5736-0515761
  • Cieslarova J, Hýbl M, Griga M, Smýkal P (2012). Molecular analysis of temporal genetic structuring in pea (Pisum sativum L.) cultivars bred in the Czech Republic and in former Czechoslovakia since the mid-20th century. Czech Journal of Genetics and Plant Breeding 48 (2): 61-73. doi: 10.17221/127/2011-CJGPB Cupic T, Tucak M, Popovic S, Bolaric S, Grljusic S et al. (2009).
  • Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. Journal of Food, Agriculture & Environment 7 (3-4): 343-348. doi: 10.1234/4.2009.2572
  • Hagenblad J, Boström E, Nygårds L, Leino MW (2014). Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections. Genetic Resources and Crop Evolution 61 (2): 413-422. doi 10.1007/ s10722-013-0046-5
  • Handerson C, Noren S, Wricha T, Meetei N, Khanna V et al. (2014). Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding 74 (2): 205-212. doi: 10.5958/0975-6906.2014.00157.6
  • Hogbin PM, Peakall R (1999). Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conservation Biology 13 (3): 514-522. doi: 10.1046/j.1523-1739.1999.98182.x
  • Horrocks RD, Vallentine JF (1999). Harvested Forages. London, UK: Academic Press.
  • Hübner S, Höffken M, Oren E, Haseneyer G, Stein N et al. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology 18 (7): 1523-1536. doi: 10.1111/j.1365-294X.2009.04106.x
  • Jain S, Kumar A, Mamidi S, McPhee K (2014). Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Molecular Biotechnology 56 (10): 925-938. doi: 10.1007/ s12033-014-9772-y
  • Merkouropoulos G, Hilioti Z, Abraham E, Lazaridou M (2017). Evaluation of Lotus corniculatus L. accessions from different locations at different altitudes reveals phenotypic and genetic diversity. Grass and Forage Science 72 (4): 851-856. doi: 10.1111/gfs.12279
  • Nasiri J, Haghnazari A, Saba J (2009). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African Journal of Biotechnology 8 (15): 3405-3417. doi: 10.5897/AJB2009.000-9332
  • Nikoumanesh K, Ebadi A, Zeinalabedini M, Gogorcena Y (2011). Morphological and molecular variability in some Iranian almond genotypes and related Prunus species and their potentials for rootstock breeding. Scientia Horticulturae 129 (1): 108-118. doi: 10.1016/j.scienta.2011.03.017
  • Nisar M, Khan A, Wadood SF, Shah AA, Hanci F (2017). Molecular characterization of edible pea through EST-SSR markers. Turkish Journal of Botany 41 (4): 338-346. doi: 10.3906/bot1608-17
  • Peter‐Schmid M, Boller B, Kölliker R (2008). Habitat and management affect genetic structure of Festuca pratensis but not Lolium multiflorum ecotype populations. Plant Breeding 127 (5): 510-517. doi: 10.1111/j.1439-0523.2007.01478.x
  • Phelan P, Moloney A, McGeough E, Humphreys J, Bertilsson J et al (2015). Forage legumes for grazing and conserving in ruminant production systems. Critical Reviews in Plant Sciences 34 (1- 3): 281-326. doi: 10.1080/07352689.2014.898455
  • Prakash N, Kumar R, Choudhary V, Singh CM (2016). Molecular assessment of genetic divergence in pea genotypes using microsatellite markers. Legume Research: 39 (2): 183-188. doi: 10.18805/lr.v0iOF.7483
  • Rana JC, Rana M, Sharma V, Nag A, Chahota RK et al. (2017). Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Molecular Biology Reporter 35 (1): 118-129. doi: 10.1007/ s11105-016-1006-y
  • Rogers SO, Bendich AJ (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5 (2): 69-76. doi: 10.1007/BF00020088
  • Roldán-Ruiz I, Van Euwijk F, Gilliland T, Dubreuil P, Dillmann C et al. (2001). A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theoretical and Applied Genetics 103 (8): 1138-1150. doi: 10.1007/s001220100571
  • Sarikamis G, Yanmaz R, Ermis S, Bakir M, Yüksel C (2010). Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research 9 (1): 591-600. doi: 10.4238/vol9-1gmr762
  • Shakhatreh Y, Baum M, Haddad N, Alrababah M, Ceccarelli S (2016). Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers. Genetic Resources and Crop Evolution 63 (5): 813-822. doi: 10.1007/s10722-015-0285-8
  • Sharma L, Prasanna B, Ramesh B (2010). Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica 138 (6): 619-631. doi: 10.1007/s10709-010-9436-1
  • Simeão R, Assis G, Montagner D, Ferreira R (2017). Forage peanut (Arachis spp.) genetic evaluation and selection. Grass and Forage Science 72 (2): 322-332. doi: 10.1111/gfs.12242
  • Smýkal P, Horáček J, Dostálová R, Hýbl M (2008a). Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. Journal of Applied Genetics 49 (2):155-166. doi: 10.1007/BF03195609
  • Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ et al. (2008b). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics 117 (3): 413-424. doi: 10.1007/s00122- 008-0785-4
  • Steel R, Torrie J (1980). Principles and Procedures of Statistics: A Biometrical Approach. Raleigh, NC, USA: McGraw-Hill Press. Turpeinen T, Vanhala T, Nevo E, Nissilä E (2003). AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theoretical and Applied Genetics 106 (7): 1333-1339. doi: 10.1007/s00122-003-1286-0
  • Uysal H, Acar Z, Ayan I, Kurt O (2018). Genetic diversity of Turkish Lathyrus L. landraces using ISSR markers. Genetika 50 (2): 395-402. doi: 10.2298/GENSR1802395U
  • Wu X, Li N, Hao J, Hu J, Zhang X et al. (2017). Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Science 57 (3): 1574-1584. doi:10.2135/cropsci2016.04.0271
  • Zhou R, Wu Z, Cao X, Jiang F (2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genetics and Molecular Research 14 (4): 13868- 13879. doi: 10.4238/2015.October.29.7