Properties, variations, roles, and potential applications of epicuticular wax: a review

Properties, variations, roles, and potential applications of epicuticular wax: a review

The cuticular wax layer covers the aerial surface of plants and acts as a barrier between plants and the environment. The cuticleplays a key role in the protection of plants from pathogens, UV light, and transpiration. Variation in the wax quality and quantity isinfluenced by factors like the solvent used for extraction, species, ontogeny, and season. Compounds isolated from the cuticle layer havebeen studied by various methods and were found to play an important role from the ecological and physiological points of view. Thesecompounds include esters, alcohols, ether, alkane, and aldehydes. Nonpolar compounds help reduce water loss in plants. The wax can beexplored for its potential applications in developing sustainable green packaging material. This review article will facilitate biologists andnonbiologists to get comprehensive and updated knowledge about various aspects of cuticular wax including its chemical compositionand variations among different species and seasons. Further studies of the wax composition will pave the way for classification of plantspecies and an understanding of plant protection from biotic and abiotic stresses.

___

  • Abas MR, Simoneit BRT (1998). Wax lipids from leaf surfaces of some common plants of Malaysia. Pertanika Journal of Science & Technology 6: 171-182.
  • Ahmed A, Crawford T, Gould S, Ha YS, Hollrah M, Noor-E-Ain F, Dussault PH (2003). Synthesis of (R)-and (S)-10,16- dihydroxyhexadecanoic acid: cutin stereochemistry and fungal activation. Phytochemistry 63: 47-52.
  • Andrady AL, Neal MA (2009). Applications and societal benefits of plastics. Philos T Roy Soc B 364: 1977-1984.
  • Asperger A, Engewald W, Fabian G (1999). Analytical characterization of natural waxes employing pyrolysis–gas chromatography– mass spectrometry. J Anal Appl Pyrol 50: 103-115.
  • Asperger A, Engewald W, Fabian G (2001). Thermally assisted hydrolysis and methylation–a simple and rapid online derivatization method for the gas chromatographic analysis of natural waxes. J Anal Appl Pyrol 61: 91-109.
  • Baker EA (1982). Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL, Price CE, editors. The Plant Cuticle. New York, NY, USA: Academic Press, pp. 139-165.
  • Baldotto LEB, Olivares FL (2008). Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54: 918-931.
  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009). Accumulation and fragmentation of plastic debris in global environments. Philos T Roy Soc B 364: 1985-1998.
  • Barthlott W, Neinhuis C (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202: 1-8.
  • Batovska DI, Todorova IT, Popov SS (2009). Seasonal variations in the leaf surface composition of field grown grapevine plants. J Serb Chem Soc 74: 1229-1240.
  • Beattie, GA, Marcell LM (2002). Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant Cell Environ 25: 1-16.
  • Belding RD, Sutton TB, Blankenship SM, Young E (2000). Relationship between apple fruit epicuticular wax and growth of Peltaster fructicola and Leptodontidium elatius, two fungi that cause sooty blotch disease. Plant Dis 84: 767-772.
  • Bhushan B, Jung YC (2008). Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/ nanopatterned surfaces. J Phys-Condens Mat 20: 225010.
  • Bianchi G (1995). Plant waxes. In: Hamilton RJ, editor. Waxes: Chemistry, Molecular Biology and Functions. Dundee, UK: Oily Press, pp. 175-222.
  • Braccini CL, Vega AS, Aroz MVC, Teal PE, Cerrillo T, Zavala JA, Fernandez PC (2015). Both volatiles and cuticular plant compounds determine oviposition of the willow sawfly Nematus oligospilus on leaves of Salix spp. (Salicaceae). J Chem Ecol 41: 985-996.
  • Brinton WF Jr (2005). Characterization of man-made foreign matter and its presence in multiple size fractions from mixed waste composting. Compost Sci Util 13: 274-280.
  • Buschhaus C, Herz H, Jetter R (2007a). Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Ann Bot London 100: 1557-1564.
  • Buschhaus C, Herz H, Jetter R (2007b). Chemical composition of the epicuticular and intracuticular wax layers on the adaxial side of Ligustrum vulgare leaves. New Phytol 176: 311-316.
  • Buschhaus C, Jetter R (2012). Composition and physiological function of the wax layers coating Arabidopsis leaves: β-amyrin negatively affects the intracuticular water barrier. Plant Physiol 160: 1120-1129.
  • Cameron KD, Teece MA, Bevilacqua E, Smart LB (2002). Diversity of cuticular wax among Salix species and Populus species hybrids. Phytochemistry 60: 715-725.
  • Cameron KD, Teece MA, Smart LB (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140: 176-183.
  • Carver TLW, Gurr SJ (2006). Filamentous fungi on plant surfaces. In: Riederer M, Muller C, editors. Biology of the Plant Cuticle. Oxford, UK: Blackwell Publishing, pp. 368-397.
  • Carver TLW, Thomas BJ, Ingeerson‐Morris SM, Roderick HW (1990). The role of the abaxial leaf surface waxes of Lolium spp. in resistance to Erysiphe graminis. J Plant Pathol 39: 573-583.
  • Casado CG, Heredia A (1999). Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle (Vitis vinifera). J Exp Bot 50: 175-182.
  • Catrow JL, Wing D, DiLella D, Volker E (2009). Gas chromatography and mass spectroscopy of cuticular and epicuticular waxes of Arabis serotina. Shepherd University Journal of Undergraduate Research 1: 27-35.
  • Celano G, D’Auria M, Xiloyannis C, Mauriello G, Baldassarre M (2006). Composition and seasonal variation of soluble cuticular waxes in Actinidia deliciosa leaves. Nat Prod Res 20: 701-709.
  • Cerman Z, Striffler BF, Barthlott W (2009). Dry in the water: the superhydrophobic water fern Salvinia–a model for biomimetic surfaces. In: Gorb SN, editor. Functional Surfaces in Biology. Amsterdam, the Netherlands: Springer, pp. 97-111.
  • Chowdhury N, Ghosh A, Bhattacharjee I, Laskar S, Chandra G (2010). Determination of the n-alkane profile of epicuticular wax extracted from mature leaves of Cestrum nocturnum (Solanaceae: Solanales). Nat Prod Res 24: 1313-1317.
  • Conn KL, Tewari JP (1989). Interactions of Alternaria brassicae conidia with leaf epicuticular wax of canola. Mycol Res 93: 240-242.
  • Cordeiro SZ, Simas NK, de Oliveira Arruda, RDC, Sato A (2011). Composition of epicuticular wax layer of two species of Mandevilla (Apocynoideae, Apocynaceae) from Rio de Janeiro, Brazil. Biochem Syst Ecol 39: 198-202.
  • Daoust SP, Mader BJ, Bauce E, Despland E, Dussutour A, Albert PJ (2010). Influence of epicuticular-wax composition on the feeding pattern of a phytophagous insect: implications for host resistance. Can Entomol 142: 261-270.
  • Denna DW (1970). Transpiration and the waxy bloom in Brassica oleracea L. Aust J Biol Sci 23: 27-32.
  • Derraik JG (2002). The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44: 842-852.
  • Dickman MB, Ha YS, Yang Z, Adams B, Huang C (2003). A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation. Mol Plant Microbe In 16: 411-421.
  • Domínguez E, Heredia A (1998). Waxes: a forgotten topic in lipid teaching. Biochem Educ 26: 315-316.
  • Dragota S, Riederer M (2007). Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition. Ann Bot- London 100: 225-231.
  • Dragota S, Riederer M (2009). Comparative study on epicuticular leaf waxes of Araucaria araucana, Agathis robusta and Wollemia nobilis. Aust J Bot 56: 644-650.
  • Drelich J, Chibowski E, Meng DD, Terpilowski K (2011). Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7: 9804-9828.
  • Dutta M, Laskar S (2009). Hydrocarbons in the surface wax of the leaves of Alstonia scholaris (Linn.) R. Br. Oriental Journal of Chemistry 25: 437-439.
  • Ebercon A, Blum A, Jordan WR (1977). A rapid colorimetric method for epicuticular wax contest of sorghum leaves. Crop Sci 17: 179-180.
  • Erosa FE, Gamboa-León MR, Lecher JG, Arroyo-Serralta GA, Zizumbo-Villareal D, Oropeza-Salín C, Peña-Rodríguez LM (2002). Major components from the epicuticular wax of Cocos nucifera. Revista de la Sociedad Química de México 46: 247-250.
  • Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B (1997). Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112: 217-224.
  • Ficke A, Gadoury DM, Seem RC, Godfrey D, Dry IB (2004). Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology 94: 438-445.
  • Freeman B, Albrigo LG, Biggs RH (1979). Cuticular waxes of developing leaves and fruit of blueberry, Vaccinium ashei Reade cv. Bluegem. J Am Soc Hortic Sci 104: 398-403.
  • García S, Heinzen H, Hubbuch C, Martínez R, De Vries X, Moyna P (1995). Triterpene methyl ethers from Palmae epicuticular waxes. Phytochemistry 39: 1381-1382.
  • Gentry GL, Barbosa P (2006). Effects of leaf epicuticular wax on the movement, foraging behavior, and attack efficacy of Diaeretiella rapae. Entomol Exp Appl 121: 115-122.
  • Gniwotta F, Vogg G, Gartmann V, Carver TL, Riederer M, Jetter R (2005). What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Plant Physiol 139: 519-530.
  • Grncarevic M, Radler F (1967). The effect of wax components on cuticular transpiration-model experiments. Planta 75: 23-27.
  • Grob K, Giuffré AM, Leuzzi U, Mincione B (1994). Recognition of adulterated oils by direct analysis of the minor components. Eur J Lipid Sci Tech 96: 286-290.
  • Guhling O, Hobl B, Yeats T, Jetter R (2006). Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis. Arch Biochem Biophys 448: 60-72.
  • Gülz PG, Boor G (1992). Seasonal variations in epicuticular wax ultrastructures of Quercus robur leaves. Z Naturforsch C 47: 807-814.
  • Gülz PG, Müller E, Prasad RBN (1991). Developmental and seasonal variations in the epicuticular waxes of Tilia tomentosa leaves. Phytochemistry 30: 769-773.
  • Guo Y, He Y, Guo N, Gao J, Ni Y (2015). Variations of the composition of the leaf cuticular wax among Chinese populations of Plantago major. Chem Biodivers 12: 627-636.
  • Hall DM, Jones RL (1961). Physiological significance of surface wax on leaves. Nature 191: 95-96.
  • Hamilton RJ (1995). Waxes: Chemistry, Molecular Biology and Functions. Dundee, UK: Oily Press.
  • Hietala T, Laakso S, Rosenqvist H (1995). Epicuticular waxes of Salix species in relation to their over wintering survival and biomass productivity. Phytochemistry 40: 23-27.
  • Hietala T, Mozes N, Genet MJ, Rosenqvist H, Laakso S (1997). Surface lipids and their distribution on willow (Salix) leaves: a combined chemical, morphological and physicochemical study. Colloids Surface B 8: 205-215.
  • Hoad SP, Grace J, Jeffree CE (1996). A leaf disc method for measuring cuticular conductance. J Exp Bot 47: 431-437.
  • Inyang EN, Butt TM, Beckett A, Archer S (1999). The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidia. Mycol Res 103: 419-426.
  • Jeffree CE (1986). The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood R, editors. Insects and The Plant Surface. London, UK: Edward Arnold, pp. 23-64.
  • Jeffree CE (2006). The fine structure of the plant cuticle. In: Riederer M, Muller C, editors. Biology of the Plant Cuticle. Oxford, UK: Blackwell Publishing, pp. 11-125.
  • Jenks MA, Gaston CH, Goodwin MS, Keith JA, Teusink RS, Wood KV (2002). Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousness. HortScience 37: 673-677.
  • Jenks MA, Tuttle HA, Feldmann KA (1996). Changes in epicuticular waxes on wildtype and eceriferum mutants in Arabidopsis during development. Phytochemistry 42: 29-34.
  • Jetter R, Kunst L, Samuels AL (2006). Composition of plant cuticular waxes. In: Riederer M, Muller C, editors. Biology of the Plant Cuticle. Oxford, UK: Blackwell Publishing, pp. 182-215.
  • Jetter R, Schäffer S (2001). Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126: 1725- 1737.
  • Jetter R, Schäffer S, Riederer M (2000). Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23: 619-628.
  • Jetter R, Sodhi R (2011). Chemical composition and microstructure of waxy plant surfaces: triterpenoids and fatty acid derivatives on leaves of Kalanchoe daigremontiana. Surf Interface Anal 43: 326-330.
  • Jones TH, Potts BM, Vaillancourt RE, Davies NW (2002). Genetic resistance of Eucalyptus globulus to autumn gum moth defoliation and the role of cuticular waxes. Can J Forest Res 32: 1961-1969.
  • Kedar KA, Jadhav RB (2012). Isolation and characterization of triterpenoids in cuticular wax of leaves of Helicanthus elasticus Linn. (Loranthaceae) parasitic on Memecylon umbellatum Burm. f. (Melastomataceae). International Journal of Drug Development and Research 4: 243-251.
  • Kerstiens G (1996). Cuticular water permeability and its physiological significance. J Exp Bot 47: 1813-1832.
  • Khan MAU, Shahid AA, Rao AQ, Bajwa KS, Muzaffar A, Rehman Samiullah T, Husnain T (2016). Molecular and biochemical characterization of cotton epicuticular wax in defense against cotton leaf curl disease. Iranian Journal of Biotechnology 13: 3-9.
  • Khan MAU, Shahid AA, Rao AQ, Kiani S, Ashraf MA, Muzaffar A, Husnain T (2011). Role of epicuticular waxes in the susceptibility of cotton leaf curl virus (CLCuV). Afr J Biotechnol 10: 17868-17874
  • Kim KS, Park SH, Jenks MA (2007). Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164: 1134-1143.
  • Koch K, Barthlott W (2009). Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos T Roy Soc A 367: 1487-1509.
  • Koch K, Bhushan B, Barthlott W (2008). Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4: 1943- 1963.
  • Kolattukudy PE (1970). Plant waxes. Lipids 5: 259-275.
  • Kolattukudy PE (1980). Biopolyester membranes of plants: cutin and suberin. Science 208: 990-1000.
  • Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA (1995). Surface signaling in pathogenesis. P Natl Acad Sci USA 92: 4080-4087.
  • Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001). Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 27: 863-875.
  • Kolb CA, Kopecký J, Riederer M, Pfündel EE (2003). UV screening by phenolics in berries of grapevine (Vitis vinifera). Funct Plant Biol 30: 1177-1186.
  • Kosma DK, Nemacheck JA, Jenks MA, Williams CE (2010). Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J 63: 31-43.
  • Krauss P, Markstädter C, Riederer M (1997). Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20: 1079-1085.
  • Kundu S, Sinhababu A (2013). Analysis of n-alkanes in the cuticular wax of leaves of Ficus glomerata. Journal of Applied and Natural Science 5: 226-229.
  • Latthe SS, Terashima C, Nakata K, Sakai M, Fujishima A (2014). Development of sol–gel processed semi-transparent and selfcleaning superhydrophobic coatings. J Mater Chem A 2: 5548- 5553.
  • Lee J, Yang K, Lee M, Kim S, Kim J, Lim S, Jang YS (2015). Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea). Process Biochem 50: 456-462.
  • Lemieux B (1996). Molecular genetics of epicuticular wax biosynthesis. Trends Plant Sci 1:312-318.
  • Li XM, Reinhoudt D, Crego-Calama M (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36: 1350-1368.
  • Maffei M (1996). Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochem Syst Ecol 24: 53-64.
  • Maiti R, Rodriguez HG, Gonzalez EA, Kumari A, Sarkar NC (2016). Variability in epicuticular wax in 35 woody plants in Linares, Northeast Mexico. Forest Res 5: 162.
  • Manheim BS, Mulroy TW (1978). Triterpenoids in epicuticular waxes of Dudleya species. Phytochemistry 17: 1799-1800.
  • Marcell LM, Beattie GA (2002). Effect of leaf surface waxes on leaf colonization by Pantoea agglomerans and Clavibacter michiganensis. Mol Plant Microbe In 15: 1236-1244.
  • Marinach C, Papillon MC, Pepe C (2004). Identification of binding media in works of art by gas chromatography–mass spectrometry. J Cult Herit 5: 231-240.
  • Markstadter C, Federle W, Jetter R, Riederer M, Hölldobler B (2000). Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants. Chemoecology 10: 33-40.
  • Marmur A (2004). The lotus effect: superhydrophobicity and metastability. Langmuir 20: 3517-3519.
  • Marois JJ, Nelson JK, Morrison JC, Lile LS, Bledsoe AM (1986). The influence of berry contact within grape clusters on the development of Botrytis cinerea and epicuticular wax. Am J Enol Viticult 37: 293-296.
  • Martin JT, Juniper BE (1970). The Cuticles of Plants. New York, NY, USA: St. Martin’s Press.
  • Matas AJ, Sanz J, Heredia A (2003). Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Int J Biol Macromol 33: 31-35.
  • Medina E, Aguiar G, Gomez M, Aranda J, Medina JD, Winter K (2006). Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama. Biochem Syst Ecol 34: 319-326.
  • Mimura MR, Salatino ML, Salatino A, Baumgratz JF (1998). Alkanes from foliar epicuticular waxes of Huberia species: taxonomic implications. Biochem Syst Ecol 26: 581-588.
  • Muller C (2006). Plant–insect interactions on cuticular surfaces. In: Riederer M, Muller C, editors. Biology of the Plant Cuticle. Oxford, UK: Blackwell Publishing, pp. 398-422.
  • Nadiminti PP, Rookes JE, Boyd BJ, Cahill DM (2015). Confocal laser scanning microscopy elucidation of the 547 micromorphology of the leaf cuticle and analysis of its chemical composition. Protoplasma 252: 1475-1486.
  • Neinhuis C, Barthlott W (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot London 79: 667-677.
  • Odlyha M (1995). Investigation of the binding media of paintings by thermoanalytical and spectroscopic techniques. Thermochim Acta 269: 705-727.
  • Oliveira AF, Meirelles ST, Salatino A (2003). Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc 75: 431-439.
  • Paoletti E, Raddi P, La Scala S (1998). Relationships between transpiration, stomatal damage and leaf wettability in declining beech trees. Chemosphere 36: 907-912.
  • Pociūtė M, Lehmann B, Vitkauskas A (2003). Wetting behaviour of surgical polyester woven fabrics. Mater Sci+ 9: 410-413.
  • Prasad RBN, Giilz PG (1990). Developmental and seasonal variations in the epicuticular waxes of beech leaves (Fagus sylvatica L.). Z Naturforsch C 45: 805-812.
  • Rashotte AM, Feldmann KA (1998). Correlations between epicuticular wax structures and chemical composition in Arabidopsis thaliana. Int J Plant Sci 773-779.
  • Regert M, Langlois J, Colinart S (2005). Characterisation of wax works of art by gas chromatographic procedures. J Chromatogr A 1091: 124-136.
  • Reicosky DA, Hanover JW (1978). Physiological effects of surface waxes I. Light reflectance for glaucous and nonglaucous Picea pungens. Plant Physiol 62: 101-104.
  • Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Post-Beittenmiller D (1998). Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116: 901-911.
  • Riedel M, Eichner A, Jetter R (2003). Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218: 87-97.
  • Riedel M, Eichner A, Meimberg H, Jetter R (2007). Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225: 1517-1534.
  • Riederer M, Schreiber L (2001). Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52: 2023-2032.
  • Ristic Z, Jenks MA (2002). Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol 159: 645- 651.
  • Rosenquist JK, Morrison JC (1988). The development of the cuticle and epicuticular wax of the grape berry. Vitis 27: 63-70.
  • Rutledge CE, Eigenbrode SD (2003). Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces attachment to leaf surfaces. Can Entomol 135: 93-101.
  • Saber M, Kashmiri MA, Mohy-ud-din A, Ahmed M, Khanum R (2010). Epicuticular wax of Tamarix aphylla L. J Chem Soc Pakistan 32:662-667.
  • Sachse D, Dawson TE, Kahmen A (2015). Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. ISOT Environ Healt S 51: 124-142.
  • Sánchez FJ, Manzanares M, de Andrés EF, Tenorio JL, Ayerbe L (2001). Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron 15: 57-70.
  • Schönherr J (1976). Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131: 159-164.
  • Schönherr J (1982). Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, editors. Physiological Plant Ecology II. Berlin, Germany: Springer, pp. 153-179.
  • Schönherr J, Riederer M (1989). Foliar penetration and accumulation of organic chemicals in plant cuticles. In: Ware GW, editor. Reviews of Environmental Contamination and Toxicology, Vol. 108. New York, NY, USA: Springer, pp. 1-70.
  • Schreiber L, Kirsch T, Riederer M (1996). Diffusion through cuticles: principles and models. Plant Cuticles 109-118.
  • Schwab M, Noga G, Barthlott W (1995). The significance of epicuticular waxes for defence of pathogens as shown for Botrytis cinerea infections of kohlrabi and pea plants. Die Gartenbauwissenschaft 160: 102-109.
  • Shirtcliffe NJ, McHale G, Newton MI (2009). Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control. Langmuir 25: 14121-14128.
  • Simoneit BR (1989). Organic matter of the troposphere—V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J Atmos Chem 8: 251-275.
  • Simoneit BR, Mazurek MA (1982). Organic matter of the troposphere—II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos Environ 16: 2139-2159.
  • Szafranek B, Tomaszewski D, Pokrzywinska K, Golebiowski M (2008). Microstructure and chemical composition of leaf cuticular wax in two Salix species and their hybrid. Acta Biol Cracov Bot 50: 49-54.
  • Taiz L, Zeiger E (1991). Plant Physiology. San Francisco, CA, USA: Benjamin Cummings.
  • Takahashi Y, Tsubaki S, Sakamoto M, Watanabe S, Azuma, JI (2012). Growth‐dependent chemical and mechanical properties of cuticular membranes from leaves of Sonneratia alba. Plant Cell Environ 35: 1201-1210.
  • Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, Vom Saal FS (2009). Components of plastic: experimental studies in animals and relevance for human health. Philos T Roy Soc B 364: 2079- 2096.
  • Uddin MN, Marshall DR (1988). Variation in epicuticular wax content in wheat. Euphytica 38: 3-9.
  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004). Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very‐long‐chain fatty acid β‐ketoacyl‐ CoA synthase. J Exp Bot 55: 1401-1410.
  • Voigt D, Gorb E, Gorb S (2007). Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Inte 1: 221-243.
  • Walton TJ (1990). Waxes, cutin and suberin. In: Harwood JL, Bowyer JR, editors. Lipids, Membranes and Aspects of Photobiology. Methods in plant biochemistry, Vol 4. New York, NY, USA: Academic Press, pp. 105-158.
  • Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, Zhou JM (2004). Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23: 2903-2913.
  • Yadav J, Datta M, Gour VS (2014). Developing hydrophobic paper as a packaging material using epicuticular wax: a sustainable approach. Bioresources 9: 5066-5072.
  • Zafar ZU, Athar HUR (2013). Reducing disease incidence of cotton Leaf curl virus (CLCuV) in cotton (Gossypium hirsutum ) by potassium supplementation. Pak J Bot 45: 1029-1038.
  • Zlatković B, Mitić ZS, Jovanović S, Lakušić D, Lakušić B, Rajković J, Stojanović G (2016). Epidermal structures and composition of epicuticular waxes of Sedum album sensu lato (Crassulaceae) in Balkan Peninsula. Plant Biosyst 151: 974-984.
  • Znidarcic D, Valic N, Trdan S (2008). Epicuticular wax content in the leaves of cabbage (Brassica oleracea L. var. capitata) as a mechanical barrier against three insect pests. Acta Agriculturae Slovenica 91: 361-370.
  • Zubris KAV, Richards BK (2005). Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138: 201-211.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK