Pollen Morphology of the Turkish Romulea Maratti (Iridaceae)

Pollen morphology of the Turkish Romulea Maratti taxa (Iridaceae) was examined using light and scanning electron microscopy. The taxa are similar in some aspects, such as pollen size and spinulate-microperforate exine sculpturing. Most taxa are monosulcate; however, in 2 taxa, R. bulbocodium (L.) Seb. & Mauri var. crocea (Boiss & Heldr.) Baker and var. leichtliniana (Heldr. ex Hal.) Bég., growing sporadically in south-western Turkey, the existence of pollen type variability (monosulcate, disulcate, trisulcate, trisynsulcate, tetrasulcate, penta-aperturate (with longer and shorter sulci), and monoporate) from single pollen sacs was recorded for the first time. In addition, aperture morphology was found to be variable within most taxa; operculate with 2 bands (bands are free or joined), operculate with 1 band (band is straight or curved), operculate with a circular band, or occasionally insulate.

Pollen Morphology of the Turkish Romulea Maratti (Iridaceae)

Pollen morphology of the Turkish Romulea Maratti taxa (Iridaceae) was examined using light and scanning electron microscopy. The taxa are similar in some aspects, such as pollen size and spinulate-microperforate exine sculpturing. Most taxa are monosulcate; however, in 2 taxa, R. bulbocodium (L.) Seb. & Mauri var. crocea (Boiss & Heldr.) Baker and var. leichtliniana (Heldr. ex Hal.) Bég., growing sporadically in south-western Turkey, the existence of pollen type variability (monosulcate, disulcate, trisulcate, trisynsulcate, tetrasulcate, penta-aperturate (with longer and shorter sulci), and monoporate) from single pollen sacs was recorded for the first time. In addition, aperture morphology was found to be variable within most taxa; operculate with 2 bands (bands are free or joined), operculate with 1 band (band is straight or curved), operculate with a circular band, or occasionally insulate.

___

  • Blackmore S & Crane PR (1998). The evolution of apertures in the spores and pollen grains of embryophytes In: Owens SJ, Rudall PJ (ed.), Reproductive Biology, pp. 159-182. Kew: Royal Botanic Gardens.
  • Borsch T & Wilde V (2000). Pollen variability within species, populations, and individuals, with particular reference to Nelumbo In: Harley MM, Moron CM, Blackmore S (ed.), Pollen and Spores: Morphology and Biology, pp. 285-299. Kew: Royal Botanic Gardens.
  • Chichiriccò G (1999). Development stages of the pollen wall and tapetum in some Crocus species. Grana 38: 31-41.
  • Dahlgren RMT, Clifford HT & Yeo PF (1985). The Families of the Monocotyledons: Structure, Evolution and Taxonomy. Berlin: Springer Verlag.
  • Erol O & Küçüker O (2003). Morpho-anatomical observations on three Romulea (Iridaceae) taxa of Turkey. Bocconea 16: 607-613.
  • Furness CA & Rudall PJ (2003). Aperture with lids: distribution and significance of operculate pollen in Monocotyledons. Int J Plant Sci 164: 835-854.
  • Goldblatt P, Manning JC & Bari A (1991). Sulcus and operculum structure in the pollen grains of Iridaceae subfamily Ixioideae. Ann Missouri Bot Gard 78: 950-961.
  • Goldblatt P, Bernhardt P & Manning JC (2002). Floral biology of Romulea (Iridaceae: Crocoideae): a progression from a generalist to a specialist pollination system. Adansonia 24: 243-262.
  • Goldblatt P, Le Thomas A & Suárez-Cervera M (2004). Phylogeny of the Afro-Madagascan Aristea (Iridaceae) revisited in the light of new data on pollen morphology. Botan J Linn Soc 144: 41-68.
  • Grayum MH (1986). Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution In: Blackmore S, Ferguson IK (ed.), Pollen and Spores: Form and Function, pp. 313-327. London: Academic Press.
  • Harley MM (1990). Occurrence of simple, tectate, monosulcate or trichotomosulcate pollen grains within the Palmae. Rev Palaeobot Palyno 64:137-147.
  • Harley MM (2004). Triaperturate pollen in monocotyledons: configurations and conjectures. Plant Syst Evol 247: 75-122.
  • Kosenko VN (1999). Contributions to the pollen morphology and taxonomy of the Liliaceae. Grana 38: 20-30.
  • Le Thomas A, Suarez-Cervera M & Goldblatt P (1996). Deux types polliniques originaux le genre Aristea (Iridaceae – Nivenioideae): implications phylogéniques. Grana 35: 87-96.
  • Manning JC & Goldblatt P (2001). A synoptic review of Romulea (Iridaceae: Crocoideae) in sub-Saharan Africa, The Arabian Peninsula and Socotra including new species, biological notes, and a new infrageneric classification. Adansonia 23: 59-108.
  • Marais W (1984). Romulea Maratti In: Davis PH (ed.), Flora of Turkey and the East Aegean Islands, vol. 8 , pp. 438-441. Edinburgh: Edinburgh University Press.
  • Martin Cacao M & Fernández I (1990). Contribucion al estudio palinologico de la familia Iridaceae en Andalucia Occidental (excepto el genero Iris L.). Lagascalia 15: 189-198.
  • Moret J, Bari A, Le Thomas A & Goldblatt P (1992). Gynodioecy, herkogamy and sex-ratio in Romulea bulbocodium var. dioica (Iridaceae). Evol Trend Plant 6: 99-109.
  • Moret J, Bari A & Le Thomas A (1993). Evolution of herkogamy and gynodioecy in Moroccan species of Romulea (Iridaceae). Pl Syst Evol 184: 241-257.
  • Moussel B, Moussel C & Moret J (1996). Les systémes de reproduction des especes françaises du genre Romulea (Iridaceae): données morphohistologiques. Can J Bot 74: 140-149.
  • Punt W, Blackmore S, Nilsson S & Le Thomas A (1994). Glossary of Pollen and Spore Terminology. Utrecht: LPP Foundation.
  • Zavada M (1983). Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structure. Bot Rev 49: 331-379.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK