Pollen grains in the atmosphere of Konya (Turkey) and their relationship with meteorological factors, in 2008

Atmospheric pollen was collected by a Burkard Volumetric 7-Day spore trap in Konya, Turkey, in 2008. In the present study, the pollen concentration is presented in relation to meteorological parameters (mean temperature, relative humidity, rainfall, and wind speed). Pollen grains of 35 taxa were identified. Of these, 18 taxa were arboreal plants, while the others were non-arboreal plants. The distribution of the total pollen grains was as follows: arboreal plants, 61.29%; Poaceae, 16.09%; non-arboreal plants, 20.25%; and undetermined, 2.37%. Arboreal taxa pollen were represented by Pinaceae, Cupressaceae/Taxaceae, Fabaceae, Betulaceae, Quercus L., Juglandaceae, and Aesculus L., while non-arboreal taxa pollen were represented by Poaceae, Asteraceae, Chenopodiaceae/Amaranthaceae, Brassicaceae, Boraginaceae, Plantago L., and Urticaceae. These were the dominant pollen types found in the atmosphere in Konya. In addition, there are generally significant positive effects of temperature and wind speed and a negative influence of relative humidity on the daily pollen levels belonging to those taxa which contribute more than 1% of the total pollen in the Konya atmosphere. The findings of the present study may be helpful for designing allergen panels as well as for allergy doctors and patients suffering from pollen allergies.

Pollen grains in the atmosphere of Konya (Turkey) and their relationship with meteorological factors, in 2008

Atmospheric pollen was collected by a Burkard Volumetric 7-Day spore trap in Konya, Turkey, in 2008. In the present study, the pollen concentration is presented in relation to meteorological parameters (mean temperature, relative humidity, rainfall, and wind speed). Pollen grains of 35 taxa were identified. Of these, 18 taxa were arboreal plants, while the others were non-arboreal plants. The distribution of the total pollen grains was as follows: arboreal plants, 61.29%; Poaceae, 16.09%; non-arboreal plants, 20.25%; and undetermined, 2.37%. Arboreal taxa pollen were represented by Pinaceae, Cupressaceae/Taxaceae, Fabaceae, Betulaceae, Quercus L., Juglandaceae, and Aesculus L., while non-arboreal taxa pollen were represented by Poaceae, Asteraceae, Chenopodiaceae/Amaranthaceae, Brassicaceae, Boraginaceae, Plantago L., and Urticaceae. These were the dominant pollen types found in the atmosphere in Konya. In addition, there are generally significant positive effects of temperature and wind speed and a negative influence of relative humidity on the daily pollen levels belonging to those taxa which contribute more than 1% of the total pollen in the Konya atmosphere. The findings of the present study may be helpful for designing allergen panels as well as for allergy doctors and patients suffering from pollen allergies.

___

  • Aira MJ (2001). Aerobiological monitoring of Cupressaceae pollen in Santiago de Compostela (NW Iberian Peninsula) over six years. Aerobiologia 17: 319-325.
  • Alcázar P, Galán C, Cariñanos P & Domìnguez-Vilches E (2003). A new adhesive for airborne pollen sampling in Spain. Aerobiologia 19: 57-61.
  • Al-Qura’n S (2008). Analysis of airborne pollen in Tafi leh, Jordan, 2002-2003. World Applied Sciences Journal 4: 730-735.
  • Alwadie HM (2008). Pollen concentration in the atmosphere of Abha City, Saudi Arabia and its relationship with meteorological parameters. Journal of Applied Sciences 8: 842-847.
  • Altintaş DU, Karakoç GB, Yilmaz M, Pinar M, Kendirli SG & Çakan H (2004). Relationship between pollen counts and weather variables in East-Mediterranean Coast of Turkey. Clinical & Developmental Immunology 11: 87-96.
  • Altunoglu MK, Toraman E, Temel M, Bicakci A & Kargioglu M (2010). Analysis of airborne pollen grains in Konya, Turkey, 2005. Pakistan Journal of Botany 42: 765-774.
  • Avolio E, Pasqualoni L, Federico S, Fornaciari M, Bonofi glio T, Orlandi F, Bellecci C & Romano B (2008). Correlation between large-scale atmospheric fi elds and the olive pollen season in Central Italy. International Journal of Biometeorology 52: 787- 796.
  • Aytuğ B, Aykut S, Merev N & Edis G (1971). Pollen Atlas of Plants from Istanbul. İstanbul: İstanbul University Press.
  • Ballero M & Maxia A (2003). Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia 19: 251-259.
  • Barletta B, Tinghino R, Corinti S, Aff erni C, Iacovacci P, Mari A, Pini C & Di Felice G (1998).Arizona cypress (Cupressus arizonica) pollen allergens. Identifi cation of cross-reactive periodate- resistant and -sensitive epitopes with monoclonal antibodies. Allergy 53: 586-593.
  • Bicakci A & Akyalcin H (2000). Analysis of airborne pollen fall in Balikesir, Turkey, 1996-1997. Annals of Agricultural and Environmental Medicine 7: 5-10.
  • Bicakci A, Ergun S, Tatlidil S, Malyer H, Özyurt S, Akkaya A & Sapan N (2002). Airborne pollen grains of Afyon, Turkey. Acta Botanica Sinica 44: 1371-1375.
  • Bianchi MM & Olabuenaga SE (2006). A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 22: 247-257.
  • Boral D, Chatterjee S & Bhattacharya K (2004). Th e occurrence and allergising potential of airborne pollen in West Bengal, India. Annals of Agricultural and Environmental Medicine 11: 45-52.
  • Ciancianaini P, Albertini R, Pinelli S, Lunghi P, Ridolo E & Dall’Aglio P (2000). Betulaceae, Corylaceae, Cupressaceae, Fagaceae and Salicaceae around Parma (Northern Italy): Pollen Calendars from 1995 to 1997. Aerobiologia 16: 309-312.
  • Damialis A, Gioulekas D, Lazopoulou C, Balafoutis C & Vokou D (2005). Transport of airborne pollen into the city of Th essaloniki: the eff ects of wind direction, speed and persistence. International Journal of Biometeorology 49: 139- 145.
  • De Benito Rica V & Soto Torres J (2001). Pollinosis and pollen aerobiology in the atmosphere of Santander. Alergologia e Inmunologia Clinica 16: 84-90.
  • Di Felice G, Barletta B, Tinghino R & Pini C (2001). Cupressaceae pollinosis: identifi cation, purifi cation and cloning of relevant allergens. International Archives of Allergy and Immunology 125: 280-289.
  • Dubus JC, Melluso JP, Bodiou AC & Stremler-Lebel N (2000). Allergy to cypress pollen. Allergy 55: 410-411.
  • Doğan C & Erik S (1995). Atmospheric pollens of Beytepe Campus (Ankara), I. Trees and shrubs. Journal of Hacettepe Science and Engineering 16: 33-67.
  • Doğan C & İnceoğlu O (1995). Atmospheric pollens of Beytepe Campus (Ankara), II. Herbs. Journal of Hacettepe Science and Engineering 16: 69-98.
  • Doğan Güner E, Duman H & Pınar NM (2011). Pollen morphology of the genus Seseli L. (Umbelliferae) in Turkey. Turkish Journal of Botany 35: 175-182.
  • Erik S & Doğan C (2002). Allerjen bitkiler. In: Onerci M (ed.) Allerjik Rinosinüzitler, pp. 257-335. Ankara: Rekmay Ltd.
  • Erkan P, Bıçakcı A, Aybeke M & Malyer H (2011). Analysis of airborne pollen grains in Kırklareli. Turkish Journal of Botany 35: 57-65.
  • Galán C, Infante F, Ruiz de Clavijo E, Guerra F, Miguel R & Domínguez E (1989). Allergy to pollen grains from Amaranthaceae and Chenopodiaceae in Cordoba, Spain. Annual and daily variation of pollen concentration. Annals of Allergy 63: 435-438.
  • Garciá-Mozo H, Perez-Badìa R & Galán C (2008). Aerobiological and meteorological factors’ infl uence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia 24: 13-18.
  • Gioulekas D, Balafoutis C, Damialis A, Papakosta D, Gioulekas G & Patakas D (2004). Fift een years’ record of airborne allergenic pollen and meteorological parameters in Th essaloniki, Greece. International Journal of Biometeorology 48: 128-136.
  • Green BJ, Yli-Panula E, Dettmann M, Rutherford S & Simpson R (2003). Airborne Pinus pollen in the atmosphere of Brisbane, Australia and relationships with meteorological parameters. Aerobiologia 19: 47-55.
  • Guvensen A & Ozturk M (2003). Airborne pollen calendar of Izmir- Turkey. Annals of Agricultural and Environmental Medicine 10: 31-36.
  • Hasnain SM, Fatima K, Al-Frayh A & Al-Sedairy ST (2005). One- year pollen and spore calendars of Saudi Arabia: Al-Khobar, Abha and Hofuf. Aerobiologia 21: 241-247.
  • Henrìquez VI, Villegas GR & Nolla JMR (2001). Airborne fungi monitoring in Santiago, Chile. Aerobiologia 17: 137-142.
  • Hyde HA (1959). Volumetric counts of pollen grains at Cardiff . Journal of Allergy 30: 219-234.
  • Kaplan A (2004). Airborne pollen grains in Zonguldak, Turkey, 2001-2002. Acta Botanica Sinica 46: 668-674.
  • Kaya Z & Aras A (2004). Airborne pollen calendar of Bartın, Turkey. Aerobiologia 20: 63-67.
  • Kihlström A, Lilja G, Pershagen G & Hedlin G (2003). Exposure to high doses of birch pollen during pregnancy, and risk of sensitization and atopic disease in the child. Allergy 58: 871- 877.
  • Leuschner RM, Christen H, Jordan P & Vonthein R. (2000). 30 years of studies of grass pollen in Basel (Switzerland). Aerobiologia 16: 381-391.
  • Moore PD & Webb JA (1983). An Illustrated Guide to Pollen Analysis. London: Hodder and Stoughton.
  • Murray MG, Galán C & Villamil CB (2008). Aeropalynological research in Salitral de la Vidriera, Buenos Aires province, Argentina. Aerobiologia 24: 181-190.
  • Negrini AC & Arobba D. (1992). Allergenic pollens and pollinosis in Italy: recent advances. Allergy 47: 371-379.
  • Obtulowiez K, Szczepanek K, Radwan J, Grzywacz M, Adamus K & Szczeklik A (1991). Correlation between airborne pollen incidence, skin prick tests and serum immunoglobulins in allergic people in Cracowm, Poland. Grana 30: 136-141.
  • Pehlivan S (1995). Türkiye’nin Alerjen Polenleri Atlası. Ankara: Ünal Off set.
  • Pérez-Badia R, Vaquero C, Sardinero S, Galán C & García-Mozo H (2010). Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain). Annals of Agricultural and Environmental Medicine 17: 37-43.
  • Popp W, Horak F, Jiiger S, Reiser K, Wagtier C & Zwick H (1992). Horsechestnut (Aesculus hippocastanum) pollen: a frequent cause of allergic sensitization in urban children. Allergy 47: 380-383.
  • Reisli İ, Keser M, Köksal Y, Yüksekkaya H & Kara F (2003). Konya il merkezinde yaşayan 6-16 yaş grubu okul çocuklarında allerjik hastalıklar sıklığı. In: 47. Milli Pediatri Kongre Kitabı. İstanbul, pp. 253.
  • Republic of Turkey Ministry of Environment and Forestry (2004). Provincial State of Environment Report, Konya Governor’s Offi ce.
  • Riberio H, Cunha M & Abreu I (2003). Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia 19: 21-27.
  • Rodríguez-Rajo FJ, Méndez J & Jato V (2005). Airborne Ericaceae pollen grains in the atmosphere of Vigo (Northwest Spain) and its relationship with meteorological factors. Journal of Integrative Plant Biology 47(7): 792-800.
  • Rogers C & Muilenberg M (2001). Comprehensive guidelines for the operation of hirst-type suction bioaerosol samplers, Pan- American Aerobiology Association Standardized Protocols.
  • Ross AM, Corden JM & Fleming DM (1996). Th e role of oak pollen in hayfever consultations in general practice and the factors infl uencing patients’ decisions to consult. British Journal of General Practice 46: 451-455.
  • Sahney M & Chaurasia S (2008). Seasonal variations of airborne pollen in Allahabad, India. Annals of Agricultural and Environmental Medicine 15: 287-293.
  • Ščevková J, Dušička J, Chrenová J & Mičieta K (2010). Annual pollen spectrum variations in the air of Bratislava (Slovakia): years 2002-2009. Aerobiologia 26: 277-287.
  • Stach A (2000). Variation in pollen concentration of the most allergenic taxa in Poznán (Poland), 1995-1996. Aerobiologia 16: 63-68.
  • Teranishi H, Katoh T, Kenda K & Hayashi S (2006). Global warming and the earlier start of the Japanese-cedar (Cryptomeria japonica) pollen season in Toyama, Japan. Aerobiologia 22: 91- 95.
  • Türe C & Salkurt E (2005). Airborne pollen grains of Bozüyük (Bilecik, Turkey). Journal of Integrative Plant Biology 47: 660- 667.
  • Vázquez M, Galán C & Domìnguez-Vilches E (2003). Infl uence of meteorological parameters on Olea pollen concentrations in Córdoba South-western Spain. International Journal of Biometeorology 48: 83-90.
  • Waisel Y, Ganor E, Epshtein V, Stupp A & Eshel A (2008). Airborne pollen, spores, and dust across the East Mediterranean Sea. Aerobiologia 24: 125-131.
  • Wodehouse RP (1935). Pollen Grains. New York: McGraw-Hill.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A new record for the flora of Turkey: Lathyrus atropatanus (Leguminosae)

Fatma GÜNEŞ, Ali Hikmet ÇIRPICI

A new Scorzonera (Asteraceae) species from South Anatolia, Turkey, and its taxonomic position based on molecular data

Mutlu GÜLTEPE, Kamil COŞKUNÇELEBİ, Seda OKUR, Serdar MAKBUL, Deniz ONAT, Murat Erdem GÜZEL

Influence of mycorrhizal strategy on the foliar traits of the plants on the Tibetan Plateau in response to precipitation and temperature

Zhaoyong SHI, Yanying LIU, Fayuan WANG, Yinglong CHEN

Two new species of Cephalaria (Caprifoliaceae) from Turkey

Ramazan Süleyman GÖKTÜRK, Hüseyin SÜMBÜL, Ayten ÇELEBİ, Leyla AÇIK

In vitro plant regeneration via petiole callus of Viola patrinii and genetic fidelity assessment using RAPD markers

Gururaj CHALAGERI, Uddagiri Venkanna BABU

Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis ‘Figaro’

Usman TARIQ, Shoaib Ur REHMAN, Muhammad Aslam KHAN, Adnan YOUNIS

Analysis of Chenopodiaceae-Amaranthaceae airborne pollen in Salamanca, Spain

David Rodríguez De La CRUZ, Estefanía SÁNCHEZ-REYES, José SÁNCHEZ-SÁNCHEZ

A new record for the flora of Turkey: Sorbus caucasica var. caucasica (Rosaceae)

Özgür EMİNAĞAOĞLU Mimar Sinan ÖZKAYA, Hüseyin Aşkın AKPULAT

New Ascomycete records for Turkish macromycota

Ilgaz AKATA, Abdullah KAYA, Yasin UZUN

Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis ‘Figaro’

Usman TARIQ, Shoaib Ur REHMAN, Muhammad Aslam KHAN, Adnan YOUNIS