Natural and anthropic forest fragments have distinct ecological behavior due to their different origin and landscape context

Natural and anthropic forest fragments have distinct ecological behavior due to their different origin and landscape context

We tested the hypothesis that plant populations in natural fragments have distinct ecological behavior in relation to anthropicfragments. We selected the species Myrcia splendens (SW.) DC. in 2 forest fragments located in southeastern Brazil that present differentorigins and landscape contexts. The natural fragment originates from landscape relief variations and is inserted in a native grasslandmatrix, while the anthropic fragment originates from fragmentation due to area conversion and is inserted in an agricultural matrix.We established transects covering an area from one border to the other in each fragment, and we established subunits of 400 m² withinthem. Within each subunit we measured all individuals of M. splendens at all establishment stages (seedlings to established trees). Wemonitored population behavior in the two fragments for 4 years, evaluating their spatial structure, temporal behavior, and age structure.The two populations present distinct ecological behaviors associated with their different origins and landscape contexts; the naturalfragment is exposed to disturbances it has adapted to throughout the evolutionary process, whereas the anthropic fragment is subject tonew evolutionary disturbances, such as effect edge, cattle, and recurrent fire.

___

  • Amiguet VT, Arnason JT, Maquin P, Cal P, Vindas OS et al. (2005). A consensus ethnobotany of the Q’eqchi’ Maya of Southern Belize. Economic Botany 59: 29-42.
  • Anderson MJ, Walsh DCI (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83 (4): 557-574.
  • Arantes CS, Vale VS, Oliveira AP, Prado-Júnior JÁ, Lopes SF et al. (2014). Forest species colonizing cerrado open areas: distance and area effects on the nucleation process. Brazilian Journal of Botany 37 (2): 143-150.
  • Araújo FC, Tng DYP, Apgaua DMG, Coelho PA, Pereira DGS et al. (2017). Post-fire plant regeneration across a closed forestsavanna vegetation transition. Forest Ecology and Management 400: 77-84.
  • Arroyo-Rodríguez V, Melo FP, Martínez-Ramos M, Bongers F, Chazdon RL et al. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews 92 (1): 326-340.
  • Barraclough TG (2015). How do species interactions affect evolutionary dynamics across whole communities? Annual Review of Ecology, Evolution, and Systematics 46: 25-48.
  • Benítez-Malvido J, Gallardo-Vásquez JC, Alvarez-Añorve MY, Avila-Cabadilla LD (2014). Influence of matrix type on tree community assemblages along tropical dry forest edges. American Journal of Botany 101 (5): 820-829.
  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE et al. (2014). Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences 111 (17): 6347-6352.
  • Coelho MS, Fernandes GW, Pacheco P, Diniz V, Meireles A et al. (2016). Archipelago of montane forests surrounded by rupestrian grasslands: new insights and perspectives. In: Fernandes GW (editor). Ecology and Conservation of Mountain-Top Grasslands in Brazil. Vol. 1. 1st ed. New York, NY, USA: Springer, pp. 129-153.
  • Coelho MS, Neves FS, Perillo LN, Morellato P, Fernandes GW (2018a). Forest archipelagos: a natural model of metacommunity under the threat of fire. Flora 238: 244-249.
  • Coelho MS, Carlos PP, Pinto VD, Meireles A, Negreiros D et al. (2018b). Connection between tree functional traits and environmental parameters in an archipelago of montane forests surrounded by rupestrian grasslands. Flora 238: 51-59.
  • Cole RA, Haber WA, Setzer WN (2008). The leaf oil composition of Myrcia splendens from Monteverdi, Costa Rica. Journal of Essential Oil Bearing Plants 11 (1): 41-44.
  • Collinge SK (2009). The Ecology of Fragmented Landscapes. 1st ed. Baltimore, MD, USA: The Johns Hopkins University Press. Dantas AAA, Carvalho LG, Ferreira E (2007). Classificação e tendências climáticas em Lavras, MG. Ciência e Agrotecnologia 31 (6): 1862-1866 (in Portuguese).
  • Fahrig L (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34 (1): 487-515.
  • Gressler E, Pizo MA, Morellato LPC (2006). Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira de Botânica 29 (4): 509-530 (in Portuguese).
  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1 (2): e1500052.
  • Hart S, Marshall DJ (2013). Environmental stress, facilitation, competition, and coexistence. Ecology 94 (12): 2719-2731.
  • Higuchi P, Oliveira-Filho AT, Bebber DP, Brown ND, Silva AC et al. (2008). Spatio-temporal patterns of tree community dynamics in a tropical forest fragment in South-East Brazil. Plant Ecology 199 (1): 125-135.
  • Hosmer DW, Lemeshow S (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. 1st ed. New York, NY, USA: Wiley Series in Probability and Statistics.
  • Hu G, Feeley KJ, Yu M (2016). Habitat fragmentation drives plant community assembly processes across life stages. Plos One 11 (7): e0159572.
  • IBGE – Instituto Brasileiro de Geografia e Estatística (2012). Manual técnico da vegetação brasileira: sistema fitogeográfico, inventário das formações florestais e campestres, técnicas e manejo de coleções botânicas, procedimentos para mapeamentos. 1st ed. Rio de Janeiro, BR: IBGE- Diretoria de Geociências (in Portuguese).
  • Jauni M, Gripenberg S, Ramula S (2015). Nonnative plant species benefit from disturbance: a meta-analysis. Oikos 124 (2): 122- 129.
  • Jules ES, Shahani PA (2003). A broader ecological context to habitat fragmentation: why matrix habitat is more important than we thought. Journal of Vegetation Science 14 (3): 459-464.
  • Kaplan EL, Meier P (1958). Non-parametric estimation from incomplete observations. Journal of the American Statistical Association 53: 457-481.
  • Lorenzi H (1998). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 1st ed. São Paulo, BR: Nova Odessa Plantarum (in Portuguese).
  • Lucas EJ, Matsumoto K, Harris SA, Lughadha EMN, Benardini B et al. (2011). Phylogenetics, morphology, and evolution of the large genus Myrcia s.l. (Myrtaceae). International Journal of Plant Sciences 172 (7): 915-934.
  • Matte ALL, Muller SC, Becker FG (2015). Forest expansion or fragmentation? Discriminating forest fragments from natural forest patches through patch structure and spatial context metrics. Austral Ecology 40 (1): 21-31.
  • Meguro M, Pirani JR, Mello-Silva R, Giulietti AM (1996). Estabelecimento dematas ripárias e capões nos ecossistemas campestres da cadeia do espinhaco, Minas Gerais. Boletim de Botânica da Universidade de São Paulo 15: 1-11 (in Portuguese). Morel JD, Menino GCO, Santos RM, Garcia PO, Luz MS (2014).
  • Population structure of Calyptranthes clusiifolia O. Berg in two patches in the southern Minas Gerais state. Bioscience Journal 30 (5): 924-937.
  • Morellato LPC, Silveira FAO (2018). Plant life in campo rupestre: new lessons from an ancient biodiversity hotspot. Flora 238: 1-10.
  • Murcia C (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution 10 (2): 58-62.
  • Ondei S, Pior LD, Vigilante T, Bowman DMJS (2017). Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. Journal of Biogeography 44 (10): 2331-2342.
  • Pardini R, Nichols E, Püttker T (2018). Biodiversity response to habitat loss and fragmentation. Reference Module. In: Dellasala DA, Goldstein MI (editors). Earth Systems and Environmental Sciences: Encyclopedia of the Anthropocene, Vol. 3. 1st ed. New York, USA: Elsevier, pp. 229-239.
  • Pert PL, Butler JRA, Bruce C, Metcalf D (2012). A composite threat indicator approach to monitor vegetation condition in the Wet Tropics, Queensland, Australia. Ecological Indicators 18: 191- 199.
  • R Core Team (2017). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/
  • Raffaele E, Veblen TT, Blackhall MB, Tercero-Bucardo N (2011). Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia, Argentina. Journal of Vegetation Science 22 (1): 59-71.
  • Ripley BD (1981). Spatial Statistics. 1st ed. New York, USA: John Wiley & Sons.
  • Rockwood LL (2015). Introduction to Population Ecology. 1st ed. New York, USA: John Wiley & Sons.
  • Souza DT (2009). Composição florística e estrutura dos capões de altitude no parque estadual do Rio Preto, Minas Gerais, Brasil. MSc Dissertation, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR (in Portuguese).
  • Tabarelli M, Lopes AV, Peres CA (2008). Edge-effects drive tropical forest fragments towards an early successional system. Biotropica 40 (6): 657-661.
  • Thompson PL, Rayfield B, Gonzalez A (2017). Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40 (1): 98-108.
  • Trimble SW, Mendel AC (1995). The cow as a geomorphic agent—a critical review. Geomorphology 13: 233-253.
  • Valente EL (2009). Relações solo-vegetação no Parque Nacional da Serra do Cipó, Espinhaço Meridional, Minas Gerais. PhD, Universidade Federal de Viçosa, Viçosa, MG, BR (in Portuguese).
  • Wilcove DS, McLellan CH, Dobson AP (1986). Habitat fragmentation in the temperate zone. Conservation Biology 6: 237-256.
  • Wilson MC, Chen X, Corlett RT, Didham RK, Ding P et al. (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology 31 (2): 219- 227.
  • Wright JS (2005). Tropical forests in a changing environment. Trends in Ecology & Evolution 20 (10): 553-560.
  • Zar JH (2010). Biostatistical Analysis. 5th Edition, Upper Saddle River, NJ, USA: Prentice–Hall/Pearson.