Moderate level of toxic boron causes differential regulation of microRNAs related to jasmonate and ethylene metabolisms in Arabidopsis thaliana

Moderate level of toxic boron causes differential regulation of microRNAs related to jasmonate and ethylene metabolisms in Arabidopsis thaliana

Earlier our colleagues detected that the genes related to jasmonate (JA), ethylene, and cell wall modification were significantlyregulated under boron (B) toxicity in wheat. Determination of regulation mechanisms of these novel genes under B toxicity isvery important in Arabidopsis thaliana as a model plant. As key regulators, the microRNAs (miRNAs) regulate gene expression atthe posttranscriptional level and respond to numerous abiotic stresses in plants. In this study, expression levels of miRNAs such asmiR159, miR172, miR319, and miR394 targeting JA and ethylene-related transcription factors and also miR397 targeting laccase weredetermined in Arabidopsis thaliana under toxic B conditions. Stem-loop quantitative reverse transcription polymerase chain reactionwas used to amplify mature miRNAs for expression analyses. Expression levels of miRNAs targeting transcription factors related toJA and ethylene metabolisms were induced remarkably in moderate B toxicity (condition 1B) but not in severe B toxicity (condition3B). Most remarkable regulations were obtained in miR172 and miR319 in Arabidopsis thaliana. Expression level of miR397 did notremarkably change under B toxicity, indicating a lack of posttranscriptional regulation of laccase related to cell wall modification.Moreover, miRNAs targeting transcription factors related to JA and ethylene metabolisms might be oxidative stress-adaptive responsesof Arabidopsis to B toxicity.

___

  • Ardic M, Sekmen AH, Tokur S, Ozdemir F, Turkan I (2009). Antioxidant response of chickpea plants subjected to boron toxicity. Plant Biology 11: 328-338. doi: 10.1111/j.1438-8677.2008.00132.x
  • Balcells I, Cirera S, Busk PK (2011). Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11: 70. doi: 10.1186/1472-6750-11-70
  • Bartel D (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
  • Bennett WF (1993). Nutrient Deficiencies and Toxicities in Crop Plants. 1st ed. St Paul, MN, USA: APS Press.
  • Cervilla LM, Blasco B, Rios JJ, Rosales MA, Sanchez-Rodriguez E et al. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany 2012: 726206. doi:10.1155/2012/726206
  • Chugh P, Dittmer DP (2013). Potential pitfalls in microRNA profiling. Wiley Interdisciplinary Reviews RNA 3: 601-616. doi: 10.1002/ wrna.1120
  • Fitzpatrick KL, Reid RJ (2009). The involvement of aquaglyceroporins in transport of boron in barley roots. Plant, Cell & Environment 32 (10): 1357-1365. doi: 10.1111/j.1365-3040.2009.02003
  • Gautam V, Singh A, Singh S, Sarkar AK (2016). An efficient LCMbased method for tissue specific expression analysis of genes and miRNAs. Scientific Reports 6: 21577.
  • Ghanati F, Morita A, Yokota H (2005). Deposition of suberin in roots of soybean induced by excess boron. Plant Science 168 (2): 397-405. doi: 10.1016/j.plantsci.2004.09.004
  • Hamurcu M, Sekmen AH, Turkan I, Gezgin S, Demiral T et al. (2013). Induced anti-oxidant activity in soybean alleviates oxidative stress under moderate boron toxicity. Plant Growth Regulation 70 (3): 217-226. doi: 10.1007/s10725-013-9793-8
  • Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY et al. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology 151: 2120- 2132. doi: 10.1104/pp.109.147280
  • Huang JH, Qi YP, Wen SX, Guo P, Chen XM et al. (2016). Illumina microRNA profiles reveal the involvement of miR397a in citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Scientific Reports 6: 22900.
  • Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stressinduced miRNA. Molecular Cell 14: 787-799. doi: 10.1016/j. molcel.2004.05.027
  • Kayıhan C, Öz MT, Eyidoğan F, Yücel M, Öktem HA (2017). Physiological, biochemical, and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars. Plant Molecular Biology Reporter 35 (1): 97-109. doi: 10.1007/s11105-016-1008-9
  • Kayıhan DS, Kayıhan C, Çiftçi YÖ (2016). Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiology and Biochemistry 109: 337-345. doi: 10.1016/j.plaphy.2016.10.016
  • Kramer MF (2011). Stem-loop RT-qPCR for miRNAs. Current Protocols in Molecular Biology 15 (1): 15.10.1-15.10.15. doi: 10.1002/0471142727.mb1510s95
  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012). Antioxidant and photosynthetic responses in plants under boron toxicity: a review. American Journal of Agricultural Biological Science 7 (3): 255-270. doi: 10.3844/ajabssp.2012.255.270
  • Liang G, Ai Q, Yu D (2015). Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis. Scientific Reports 5: 11813.
  • Liang M, Haroldsen V, Cai X, Wu Y (2006). Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant, Cell & Environment 29 (5): 746-753. doi: 10.1111/j.1365- 3040.2005.01435.x
  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297 (5589): 2053-2056. doi: 10.1126/science.1076311
  • Mengel K, Kirkby EA (2001). Principles of Plant Nutrition. 5th ed. Dordrecht, the Netherlands: Kluwer Academic Publishers. Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Nable RO, Banuelos GS, Paull JG (1997). Boron toxicity. Plant and Soil 193 (1-2): 181-198. doi: 10.1023/A:1004272227886
  • Ou B, Yin KQ, Liu SN, Yang Y, Gu T et al. (2011). A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation. Molecular Plant 4 (3): 546-555.
  • Öz MT, Yılmaz R, Eyidoğan F, Graaff L, Yücel M et al. (2009). Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L.) leaves. Turkish Journal of Agriculture & Forestry 33: 191-202. doi: 10.3906/tar-0806-22
  • Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S et al. (2013). Boron stress responsive microRNAs and their targets in barley. PLoS ONE 8 (3): e59543. doi: 10.1371/journal.pone.0059543
  • Pardossi A, Romani M, Carmassi G, Guidi L, Landi M et al. (2015). Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant and Soil 395: 375-389. doi: 10.1007/s11104-015-2571-9
  • Phukan UJ, Jeena GS, Tripathi V, Shukla RK (2017). Regulation of Apetala2/Ethylene response factors in plants. Frontiers in Plant Science 8: 150. doi: 10.3389/fpls.2017.00150
  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004). A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment 25 (11): 1405-1414. doi: 10.1111/j.1365- 3040.2004.01243.x
  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P et al. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biology 6: e230. doi: 10.1371/journal. pbio.0060230
  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12. doi: 10.1186/1746-4811-3-12
  • Warington K (1923). The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany 37: 629-672. doi: 10.1093/oxfordjournals.aob.a089871
  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM et al. (2010). Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biology 10: 234. doi: 10.1186/1471- 2229-10-234
  • Zhang B (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany 66 (7): 1749-1761. doi: 10.1093/jxb/erv013
  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Research 15: 336-360. doi: 10.1038/ sj.cr.7290302
  • Zhao L, Kim Y, Dinh TT, Chen X (2007). miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant Journal 51 (5): 840-849. doi: 10.1111/j.1365- 313X.2007.03181.x