Mining and analysis of chloroplast simple sequence repeats (SSRs) from eight species of Aquilaria
Mining and analysis of chloroplast simple sequence repeats (SSRs) from eight species of Aquilaria
Aquilaria is a tropical forest tree, producer of the famed and expensive agarwood. Aggressive collection of agarwood put strain on the natural stands of Aquilaria species, sparking efforts to domesticate the tree and cultivate agarwood in plantations. However, tree domestication progress is hampered by the scarcity of genomic resources that is crucial for breeding programs. In this study, the complete chloroplast (cp) genome sequences from eight Aquilaria species were analyzed in silico. For identification of the simple sequence repeats (SSRs), MISA PERL script which had a repeat length of 12 for mononucleotides (mono-), 6 for dinucleotides (di-), 4 for trinucleotides (tri-), 3 for tetranucleotides (tetra-), pentanucleotides (penta-), and hexanucleotides (hexa-), respectively, along with frequency were utilized. From a total of 312 SSRs that were discovered, merely 50 (16%) were found localized within the coding region while the majority (84%) were within the intergenic regions, with an average of one SSR per 4.5 kb. The mean length of the SSRs were 11.63 bp. Mono- repeats were the predominant motifs (29.2%), followed by tetra- (28.8%), di- (20.5%), tri- (19.9%), and penta- (1.6%). Whereas the most recurring motifs were A/T (97.8%) for mono-, AT/AT (87.5%) for di-, AAT/ATT (48.4%) for tri-, and AAAT/ATTT (45.6%) for tetra-. GO analysis using the REVIGO software identified four molecular functions, six biological processes and three cellular components. In conclusion, findings of this study offer a scientific foundation for future phylogenetics, evolutionary genetics, diversity studies and breeding programs on Aquilaria species.
___
- Akkaya MS, Bhagwat AA, Cregan PB (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132 (4): 1131–1139.
- Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA (2011). Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics 123 (1): 77–93. doi: 10.1007%2Fs00122-011-1568-x
- Barden A, Anak NA, Mulliken T, Song M (2000). Heart of the matter: agarwood use and trade and CITES implementation for Aquilaria malaccensis. Cambridge, UK: TRAFFIC International.
- Binns D, Dimmer E, Huntley R, Barrell D, O’donovan C et al (2009). QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25 (22): 3045–3046. doi: 10.1093/ bioinformatics/btp536
- Blanchette RA, Jurgens JA, Beek HHV (2015). Growing Aquilaria and production of Agarwood in hill agro-ecosystems. In: Eckman K, Ralte L (editors). Integrated Land Use Management in the Eastern Himalayas, India: Akansha Publishing House Delhi, pp. 66–82.
- Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT et al. (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11 (1): 1–18. doi: 10.1186/1471-2164-11-569
- Chen H, Wang L, Wang S, Liu C, Blair MW et al. (2015). Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PloS One 10 (4): e0120273. doi: 10.1371/journal.pone.0120273
- Cheng J, Zhao Z, Li B, Qin C, Wu Z et al. (2016). A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Scientific Reports 6 (1): 1–12. doi: 10.1038/ srep18919
- Chua LSL, Lee SL, Lau KH, Zakaria NF, Tnah LH et al. (2016). Conservation action plan for the threatened agarwood species Aquilaria malaccensis (Thymelaeaceae) in Peninsular Malaysia. Kepong, Malaysia: Forest Research Institute Malaysia.
- CITES (2004). Convention on international trade in endangered species of Wild Fauna and Flora. CoP13 Prop. 49. Consideration of proposals for amendment of Appendices I and II-Aquilaria spp. and Gyrinops spp. Thirteenth meeting of the conference of the parties, 2–14 Oct 2004, Bangkok. International Environment House, Geneva, pp 1–9
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21 (18): 3674–3676. doi: 10.1093/bioinformatics/bti610
- Dormontt EE, Boner M, Braun B, Breulmann G, Degen B et al. (2015). Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biological Conservation 191: 790–798. doi: /10.1016/j.biocon.2015.06.038
- Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998). Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Molecular Ecology 7: 307–316.
- Ellegren H (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5 (6): 435–445. doi: 10.1038/nrg1348
- Eurlings MC, van Beek HH, Gravendeel B (2010). Polymorphic microsatellites for forensic identification of agarwood (Aquilaria crassna). Forensic Science International 197 (1-3), 30–34. doi: 10.1016/j.forsciint.2009.12.017
- Fagundes BS, da Silva LF, Giacomin RM, Secco D, Díaz-Cruz JA et al. (2016). Transferability of microsatellite markers among Myrtaceae species and their use to obtain population genetics data to help the conservation of the Brazilian Atlantic
- Forest. Tropical Conservation Science 9 (1): 408–422. doi: 10.1177/194008291600900122
- Faridah-Hanum I, Mustapa MZ, Lepun P, Tuan Marina TI, Nazre M et al. (2009). Notes on the distribution and ecology of Aquilaria Lam. (Thymelaeaceae) in Malaysia. Malaysian Forester 72 (2): 247–259.
- Hishamuddin MS, Lee SY, Ng WL, Ramlee SI, Lamasudin Du et al. (2020). Comparison of eight complete chloroplast genomes of the endangered Aquilaria tree species (Thymelaeaceae) and their phylogenetic relationships. Scientific Report 10 (1): 1–13. doi: 10.1038/s41598-020-70030-0
- Hung KH, Lin CH, Ju LP (2017). Tracking the geographical origin of timber by DNA fingerprinting: a study of the endangered species Cinnamomum kanehirae in Taiwan. Holzforschung 71 (11): 853–862. doi: 10.1515/hf-2017-0026
- IUCN (2021). The IUCN Red List of Threatened Species. Version 2021-2 [online]. Website https://www.iucnredlist.org/searc h?query=Aquilaria&searchType=species [Accessed 22 April 2021].
- Kale SM, Pardeshi VC, Kadoo NY, Ghorpade PB, Jana MM et al. (2012). Development of genomic simple sequence repeat markers for linseed using next-generation sequencing technology. Molecular Breeding 30 (1): 597–606. doi: 10.1007/ s11032-011-9648-9
- Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica 177 (3): 309–334. doi: 10.1007/s10681-010-0286-9
- Kato S, Imai A, Rie N, Mukai Y (2013). Population genetic structure in a threatened tree, Pyrus calleryana var. dimorphophylla revealed by chloroplast DNA and nuclear SSR locus polymorphisms. Conservation Genetics 14 (5): 983–996. doi: 10.1007%252Fs10592-013-0489-4
- Liu G, Xie Y, Zhang D, Chen H (2018). Analysis of SSR loci and development of SSR primers in Eucalyptus. Journal of Forestry Research 29 (2): 273–282. doi: 10.1007/s11676-017-0434-3
- Liu SR, Li WY, Long D, Hu CG, Zhang JZ (2013). Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. PloS One 8 (10): e75149. doi: 10.1371/ journal.pone.0075149
- McCauley DE (1995). The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology & Evolution 10(5): 198–202. doi: 10.1016/S0169-5347(00)89052-7
- Moe KT, Chung JW, Cho YI, Moon JK, Ku JH et al. (2011). Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. Journal of Integrative Plant Biology 53 (1): 63–73. doi: 10.1111/j.1744-7909.2010.01012.x
- Mohamed R, Lee SY (2016). Keeping up appearances: Agarwood grades and quality. In: Mohamed R (editor) Agarwood. Tropical Forestry. Singapore: Springer, pp. 149–167. doi: 10.1007/978-981-10-0833-7_10
- Morgante M, Olivieri AM (1993). PCR‐amplified microsatellites as markers in plant genetics. The Plant Journal 3 (1): 175–182. doi: 10.1046/j.1365-313X.1993.t01-9-00999.x
- Ozyigit II, Dogan I, Filiz E (2015). In silico analysis of simple sequence repeats (SSRs) in chloroplast genomes of ‘Glycine’ species. Plant Omics 8 (1): 24-29. doi: 10.3316/INFORMIT.023705269856161
- Perdereau AC, Kelleher CT, Douglas GC, Hodkinson TR (2014). High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. BMC Plant Biology 14(1), 1-12.
- Pern YC, Lee SY, Ng WL, Mohamed R (2020). Cross-amplification of microsatellite markers across agarwood-producing species of the Aquilarieae tribe (Thymelaeaceae). 3 Biotech 10 (3): 1–9. doi: 10.1007/s13205-020-2072-2
- Phumichai C, Phumichai T, Wongkaew A (2015). Novel chloroplast microsatellite (cpSSR) markers for genetic diversity assessment of cultivated and wild Hevea rubber. Plant Molecular Biology Reporter 33 (5): 1486–1498. doi: 10.1007/s11105-014-0850-x
- Powell W, Morgante M, Andre C, Hanafey M, Vogel J et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2 (3): 225–238. doi: 10.1007/BF00564200
- Provan J, Powell W, Hollingsworth PM (2001). Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16 (3): 142–147. doi: 10.1016/S0169-5347(00)02097-8
- Qian J, Song J, Gao H, Zhu Y, Xu J et al.(2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS One 8 (2): e57607. doi: 10.1371/journal. pone.0057607
- Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2007). Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23 (1): 1–4. doi: 10.1093/ bioinformatics/btl547
- Shanker A (2013). Identification of microsatellites in chloroplast genome of Anthoceros formosae. Archive For Bryology 191: 1–6.
- Shanker A (2014). Computationally mined microsatellites in chloroplast genome of Pellia endiviifolia. Archive For Bryology 199: 1–5.
- Shukla N, Kuntal H, Shanker A, Sharma SN (2018). Mining and analysis of simple sequence repeats in the chloroplast genomes of genus Vigna. Biotechnology Research and Innovation 2 (1): 9–18. doi: 10.1016/j.biori.2018.08.001
- Singh P, Sharma H, Nag A, Bhau BS, Sharma RK (2015). Development and characterization of polymorphic microsatellites markers in endangered Aquilaria malaccensis. Conservation Genetics Resources 7 (1): 61–63. doi: 10.1007/s12686-014-0287-4
- Smith SE, Al‐Doss A, Warburton M (1991). Morphological and agronomic variation in North African and Arabian alfalfas. Crop Science 31 (5): 1159–1163. doi: 10.2135/cropsci1991.00 11183X003100050016x
- Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK et al. (2011). Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. Plos One 6 (6): e21298. doi: 10.1371/journal.pone.0021298
- Stothard P (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28 (6): 1102–1104. doi: 10.2144/00286ir01
- Tambarussi EV, Melotto-Passarin DM, Gonzalez SG, Brigati JB, de Jesus FA et al. (2009). In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species. Crop Breeding and Applied Biotechnology 9 (4): 344–352. doi: 10.12702/1984-7033.v09n04a09
- Tautz D (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17 (16): 6463–6471. doi: 10.1093/nar/17.16.6463
- The Plant List (2013) onward (continuously updated). A working list of all plant species. Version 1.1 [online] Website http://www. theplantlist.org/tpl1.1/search?q=Aquilaria [accessed 28 June 2021]
- Tnah LH, Lee CT, Lee SL, Ng KKS, Ng CH et al. (2012). Isolation and characterization of microsatellite markers for an important tropical tree, Aquilaria malaccensis (Thymelaeaceae). American Journal of Botany 99 (11): e431–e433. doi: 10.3732/ajb.1200165
- Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N et al. (2012). A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13 (1): 1–16. doi: 10.1186/1471- 2164-13-136
- Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002). In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular & Molecular Biology Letters 7 (2A): 537–546. doi:
- Vieira MLC, Santini L, Diniz AL, Munhoz CDF (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology 39 (3): 312–328. doi: 10.1590/1678- 4685-GMB-2016-0027
- Zhang YT, Wang ZF, Cao HL, Li XY, Wu LF et al. (2010). Isolation and characterization of polymorphic microsatellite loci in Aquilaria sinensis (Lour.) Gilg. Conservation Genetics Resources 2 (1): 5–6. doi: 10.1007/s12686-009-9110-z
- Zou C, Lu C, Zhang Y, Song G (2012). Distribution and characterization of simple sequence repeats in Gossypium raimondii genome. Bioinformation 8 (17): 801–806. doi: 10.6026/97320630008801