Male individuals in cultivated Fritillaria persica L. (Liliaceae): real androdioecy or gender disphasy?

In the last twenty years the growing number of studies about the reproductive biology in angiosperms has brought to light new cases of andromonoecy and androdioecy, the rarest sexual models among flowering plants. Female-sterile sexual systems, especially within order Liliales and family Liliaceae, often seem to occur in the particular form of size/age dependent sex allocation, known as "gender disphasy". The presence of male individuals of Fritillaria persica (Liliaceae) is here documented. Comparative morphological and functional sexual expression of this species, among males and hermaphrodites, was investigated by means of flowers counting, morphometric measurements of plants and pollen-grains, pollen viability and germinability tests, and crossing experiments. The results show that hermaphrodite plants are significantly bigger and produce a higher number of flowers than males. On the other hand, there is no difference either in terms of pollen size or potential male fitness, between the 2 sex types. This suggests the occurrence of gender disphasy in this species, even if our preliminary crossing experiments seem to show an effective higher fitness of male individuals in fertilization. F. persica resulted also partially self-compatible. Our results are discussed in relation to recent findings about andromonoecious and androdioecious breeding systems within Liliales.

Male individuals in cultivated Fritillaria persica L. (Liliaceae): real androdioecy or gender disphasy?

In the last twenty years the growing number of studies about the reproductive biology in angiosperms has brought to light new cases of andromonoecy and androdioecy, the rarest sexual models among flowering plants. Female-sterile sexual systems, especially within order Liliales and family Liliaceae, often seem to occur in the particular form of size/age dependent sex allocation, known as "gender disphasy". The presence of male individuals of Fritillaria persica (Liliaceae) is here documented. Comparative morphological and functional sexual expression of this species, among males and hermaphrodites, was investigated by means of flowers counting, morphometric measurements of plants and pollen-grains, pollen viability and germinability tests, and crossing experiments. The results show that hermaphrodite plants are significantly bigger and produce a higher number of flowers than males. On the other hand, there is no difference either in terms of pollen size or potential male fitness, between the 2 sex types. This suggests the occurrence of gender disphasy in this species, even if our preliminary crossing experiments seem to show an effective higher fitness of male individuals in fertilization. F. persica resulted also partially self-compatible. Our results are discussed in relation to recent findings about andromonoecious and androdioecious breeding systems within Liliales.

___

  • Bambacioni V (1928). Ricerche sulla ecologia e sulla embriologia di Fritillaria persica. Annali di Botanica 18: 7-37.
  • Barret SCH (1992). Gender variation and the evolution of dioecy in Wurmbea dioica (Liliaceae). J Evol Biol 5: 423-444.
  • Barrett SCH (2002). The evolution of plant sexual diversity. Nature Reviews, Genetics 3: 274-284.
  • Cao G-X & Kudo G (2008). Size dependent sex allocation in a monocarpic perennial herb, Cardiocrinum cordatum (Liliaceae). Plant Ecol 194(1): 99-107.
  • Celesti-Grapow L, Alessandrini A, Arrigoni PV, Banfi E, Bernardo L, Bovio M, Brundu G, Cagiotti MR, Camarda I, Carli E, Conti F, Fascetti S, Galasso G, Gubellini L, La Valva V, Lucchese F, Marchiori S, Mazzola P, Peccenini S, Poldini L, Pretto F, Prosser F, Siniscalco C, Villani MC, Viegi L, Wilhalm T & Blasi C (2009) Inventory of the non-native flora of Italy. Plant Biosystems 143(2): 386-430.
  • Charlesworth D (2002). Plant sex determination and sex chromosomes. Heredity 88: 94-101.
  • Dafni A (1992). Pollination Ecology: a Practical Approach. Oxford,University Press, Oxford.
  • Dafni A & Shmida A (2002). Andromonoecy in Colchicum stevenii C. Koch (Liliaceae) - Frequency, phenology, and reserve allocation. Israel J Pl Sci 50: 5 1-57.
  • D’Arienzo M, Bambacioni-Mezzetti V (1967). Sulla morfologia dei cromosomi di Fritillaria persica L. Delpinoa 6/7: 285-295.
  • Delannay X (1978). La gynodioecie chez les Angiospermes. Natur Belg 59: 223-235.
  • Emms SK (1993). Andromonoecy in Zigadenus paniculatus (Liliaceae): spatial and temporal patterns of sex allocation. Am J Bot 80: 914- 923.
  • Emms SK (1996). Temporal pattern of seed set and decelerating fitness returns on female allocation in Zigadenus paniculatus, an andromonoecious lily. Am J Bot 83: 304-315.
  • Fisher RA (1930). The Genetical Theory of Natural Selection. Oxford Univ. Press.
  • Guitián J, Guitián P, Medrano M & Sánchez JM (1999). Variation in floral morphology and individual fecundity in Erythronium dens- canis (Liliaceae). Ecography 22: 708-714.
  • Jones B & Gliddon C (1999). Reproductive biology and genetic structure in Lloydia serotina. Plant Ecol 141: 151-161.
  • Jong de T & Klinkhamer P (2005). Evolutionary ecology of plant reproductive strategies. Cambridge University Press, UK.
  • Khaniki GB (1997). Karyomorphological studies on Fritillaria persica. Phytomorphology 47(1): 27-44.
  • Khatum S & Flowers TJ (1995). The estimation of pollen viability in rice. Journal of Exp Bot 46: 151-154.
  • Kong H-H, Wang AL, Lee J & Fu C-X (2007). Studies of systematic evolution and karyotypic variation in Smilax and Heterosmilax (Smilacaceae). Acta Phytotax Sin 45: 257-273.
  • Liao W-J & Zhang D-Y (2008). Increased maleness at flowering stage and femaleness at fruiting stage with size in an andromonoecious perennial, Veratrum nigrum. J Int Pl Biol 50(8): 1024-1030.
  • Liao W-J, Song Q-F & Zhang D-Y (2006). Pollen and resource limitation in Veratrum nigrum andromonoecious herb. J Int Pl Biol 48(12): 1401-1408.
  • Lloyd DG (1983). Evolutionary stable sex ratios and sex allocations. J Theor Biol 105: 525-539.
  • Lloyd DG & Bawa KS (1984). Modification of the gender of seed plants in varying conditions. Evol Biol 17: 255-336.
  • Maki M (1992). Fixation indices and genetic diversity in hermaphroditic and gynodioecious populations of Japanese Chionographis (Liliaceae). Heredity 68: 329-336.
  • Maki M (1993). Outcrossing and fecundity advantage of females in gynodioecious Chionographis japonica var. kurohimensis (Liliaceae). Am J Bot 80: 629-634.
  • Maki M & Masuda M (1993). Spatial autocorrelation of genotypes in a gynodioecious population of Chionographis japonica var. kurohimensis (Liliaceae). Int J Pl Sci 154: 457.
  • Manicacci D & Despres L (2001). Male and hermaphrodite flowers in the alpine lily Lloydia serotina. Can J Bot 79: 1107-1114.
  • Matsuura H (1935). On karyo-ecotypes of Fritillaria camschatcensis (L.) Ker-Gawler. J Fac Sci Hokkaido Imp Univ, series V 3(5): 219-232.
  • Mayer SS & Charlesworth D (1991). Cryptic dioecy in flowering plants. Trends Ecol Evol 6: 320-325.
  • Meagher TSR (2007). Linking the evolution of gender variation to floral development. Ann Bot (London) 100: 165-176.
  • Meagher TR & Thompson E (1987). Analysis of parentage for naturally established seedlings of Chamaelirium luteum (Liliaceae). Ecology 68:803-812.
  • Nautiyal BP, Nautiyal MC, Khanduri VP & Rawat N (2009). Floral biology of Aconitum heterophyllum Wall.: a critically endangered alpine medicinal plant of Hymalaia, India. Turk J Bot 32:13-20.
  • Nishikawa Y (1998). The function of multiple flowers of a spring ephemeral, Gagea lutea (Liliaceae), with reference to blooming order. Can J Bot 76(8): 1404–1411.
  • Pannel JR (2002a). The evolution and maintenance of androdioecy. Ann Rev Ecol Syst 33: 397-425.
  • Pannel JR (2002b). What is functional androdioecy? Functional Ecol, 16, 862-865.
  • Peruzzi L, Leitch IJ & Caparelli KF (2009). Chromosome diversity and evolution in Liliaceae. Ann Bot (London) 103(3): 459-475.
  • Peruzzi L, Tison J-M, Peterson A & Peterson J (2008). On the phylogenetic position and taxonomic value of Gagea trinervia (Viv.) Greuter and Gagea sect. Anthericoides A. Terracc. (Liliaceae). Taxon 57: 1201-1214.
  • Pignatti S (1982). Flora d’Italia. Edagricole, Bologna.
  • Rodriguez-Riano T & Dafni A (2000). A new procedure to asses pollen viability. Sex Pl Repr 12: 241-244.
  • Shimizu T, Hatanaka Y, Zentoh H, Yashima T, Kinoshita E, Watano Y & Shimizu T (1998). The role of sexual and clonal reproduction in maintaining population in Fritillaria camtschatcensis (L.) Ker- Gawl. (Liliaceae). Ecol Res 13: 27-39.
  • Smouse PE & Meagher TR (1994). Genetic analysis of male reproductive contributions in Chamaelirium luteum (L.) Gray (Liliaceae). Genetics 136: 313-322.
  • Smouse PE, Meagher TR & Kobak CJ (1999). Parentage analysis in Chamaelirium luteum (L.) Gray (Liliaceae): why do some males have higher reproductive contributions? J Evol Biol 12: 1069-1077.
  • Vallejo-Marìn M & Rausher MD (2007). Selection through Female Fitness Helps to Explain the Maintenance of Male Flowers. Am Nat 169: 563-568.
  • Wolfe LM (1998). Regulation of sex expression in desert and Mediterranean populations of an andromonoecious plant (Gagea chlorantha, Liliaceae). Israel J Pl Sci 46: 17-25.