High genetic diversity within and low differentiation among Juniperus excelsa M. Bieb. populations: Molecular markers reveal their genetic structure patterns

High genetic diversity within and low differentiation among Juniperus excelsa M. Bieb. populations: Molecular markers reveal their genetic structure patterns

J. excelsa M. Bieb forms about 82% of the total juniper forests in Turkey. A total of 456 plant samples belonging to 19 J. excelsa populations were collected to determine the genetic variation of J. excelsa and compare their genetic diversity among populations via simple-sequence repeat (SSR) and intron targeted amplified polymorphism (ITAP) markers. Seven SSR and 132 ITAP loci were polymorphic. The percentage of polymorphism for ITAP loci at the population level ranged from 31.34 to 55.97. Average values of expected heterozygosity, observed heterozygosity, Shannon’s information index, Fis, Fst and Nm for SSR loci were 0.616, 0.512, 1.54, 0.124, 0.043, and 5.513, respectively. Genetic diversity values of ITAP loci were lower than those of SSR loci. Gst and Nm values for ITAP loci were 0.225 and 1.728, respectively. Pair-wise genetic distances varied between 0.023 and 0.292 for SSR loci, 0.010 and 0.110 for ITAP loci. The majority of the genetic variations originated from intra-population level (98% for SSRs, 80% for ITAPs). Mantel test results showed that there was no statistically significant correlation between pair-wise geographical and genetic distances. It was indicated that the populations had similiar structure pattern. It was seen that J. excelsa populations maintained their high genetic diversity. Additionally, genetic differentiations among the populations were low. No indication of genetic adverse effect related to habitat fragmentation was determined in the populations. In conclusion, it can be said that this situation is an advantage in terms of implementing conservation strategies for this species. The authorities in the Turkish Ministry of Forestry should plan some conservation studies in order to maintain the existing genetic diversity of this species.

___

  • Adams RP (2014). Junipers of the World: The Genus Juniperus. 4th ed. Bloomington, Indiana, USA: Trafford Pub.
  • Adams RP, Armağan M, Boratynski A, Douaihy B, Dagher-Kharrat MD et al. (2016). Evidence of relictual introgression or incomplete lineage sorting in nrDNA of Juniperus excelsa and J. polycarpos in Asia Minor. Phytologia 98 (2): 146-155.
  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008). Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17: 5177-5188. doi: 10.1111/j.1365-294X.2008.03971.x.
  • Bettencourt SX, Medonca D, Lopes MS, Rocha S, Monjardino P et al. (2015). Genetic diversity and population structure of the endemic Azorean juniper, Juniperus brevifolia (Seub.) Antoine, inferred from SSRs and ISSR markers. Biochemical Systematics and Ecology 59: 314-324. doi: 10.1016/j.bse.2015.02.003
  • Boratyński A, Wachowiak W, Dering M, Boratyńska K, Sękiewicz K et al. (2014). The biogeography and genetic relationships of Juniperus oxycedrus and related taxa from the Mediterranean and Macaronesian regions. Botanical Journal of the Linnean Society 174: 637-653. doi: 10.1111/boj.12147
  • Coode MJE, Cullen J (1965) Juniperus L. In: Davis PH (editor) Flora of Turkey and the East Aegean Islands, Vol. 1. 1st ed. Edinburg, United Kingdom: Edinburgh University Press, pp 78-84.
  • Dellaporta SL, Wood J, Hicks JB (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1: 19-21. doi: 10.1007/BF02712670
  • Douaihy B, Vendramin GG, Boratyński A, Machon N, Bou DagherKharrat M (2011). High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants plr003: 1-14. doi: 10.1093/aobpla/plr003
  • Earl DA, von Holdt BM (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361. doi: 10.1007/s12686-011-9548-7
  • Elibol C, Bilgen BB (2017). Genetic diversity and molecular characterization of natural Pancratium maritimum L. populations by DNA markers. Turkish Journal of Botany 41: 569-578. doi: 10.3906/bot-1702-35
  • Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x
  • Garcia D. 2001. Effects of seed dispersal on Juniperus communis recruitment on a Mediterranean mountain. Journal of Vegetation Science 12: 839-848.
  • Gaudeul M, Taberlet P, Till-Bottraud I (2000). Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Molecular Ecology 9: 1625-1637. doi: 10.1046/j.1365- 294x.2000.01063.x
  • Geng Q, Qing H, Ling Z, Leelani N, Yang J et al. (2016). Characterization of polymorphic microsatellite markers for a coniferous shrub Juniperus sabina (Cupressaceae). Plant Species Biology 32: 252-255. doi: 10.1111/1442-1984.12152
  • Govindaraj M, Vetriventhan M, Srinivasan M (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International: 431487. doi: 10.1155/2015/431487
  • Gültekin HC, Gültekin ÜG (2006). Natural distribution, biology and ecology of some juniper (Juniperus L.) species in Turkey. Journal of Southwest Anatolia Forest Research Institute 7 (1): 39-66 (in Turkish).
  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124. doi: 10.1007/978-94-011-2815-5_7
  • Jakobsson M, Rosenberg NA (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806. doi: 10.1093/bioinformatics/ btm233
  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A et al. (2010). Habitat fragmentation causes immediate and timedelayed biodiversity loss at different trophic levels. Ecology Letters 13: 597-605. doi: 10.1111/j.1461-0248.2010.01457.x
  • Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R et al (2012). Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in central Italy. Journal of Heredity 103: 408-417. doi: 10.1093/jhered/ess004
  • Li ZH, Liu ZL, Wang YJ, Fang MF, Wang ML et al. (2013). Isolation and characterization of polymorphic microsatellite loci in Ping’s juniper Juniperus pingii. Conservation Genetics Resources 5: 683-685. doi: 10.1007/s12686-013-9882-z
  • McDermott JM, McDonald BA (1993). Gene flow in plant pathosystems. Annual Review of Phytopathology 31: 353-373. doi: 10.1146/annurev.py.31.090193.002033
  • Michalczyk IM (2008). Application of DNA marker systems to test for genetic imprints of habitat fragmentation in Juniperus communis L. on different spatial and temporal scalesIntegration of scientific knowledge into conservation measures. PhD, Philipps-University of Marburg, Germany.
  • Michalczyk IM., Opgenoorth L, Lueckei Y, Huck S, Ziegenhagen B (2010). Genetic support for peryglacial survival of Juniperus communis L. in Central Europe. The Holocene 20: 887-894. doi: 10.1177/0959683610365943
  • Michalczyk IM, Sebastiani F, Buonamici A, Cremer E, Mengel C et al. (2006). Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. Molecular Ecology Notes 6: 346-348. doi: 10.1111/j.1471-8286.2005.01227.x
  • Mona S, Ray N, Arenas M, Excoffier L (2014). Genetic consequences of habitat fragmentation during a range expansion. Heredity 112: 291-299. doi: 10.1038/hdy.2013.105
  • Nei M (1972). Genetic distance between populations. The American Naturalist 106: 283-292.
  • Nei M (1987). Molecular Evolutionary Genetics. 1 st ed. New Yok, NY, USA: Columbia University Press.
  • Opgenoorth L (2009). Identification and characterization of microsatellite marker in the tetraploid Juniperus tibetica Kom. using next generation sequencing. Conservation Genetic Resources 1: 253-255. doi: 10.1007/s12686-009-9062-3
  • Peakall R, Smouse P (2006). GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. doi: 10.1111/j.1471- 8286.2005.01155.x
  • Pecina-Quintero V, Anaya-Lopez JL, Zamarripa-Colmenero A, Montes-Garcia N, Nunez-Colin C et al. (2012). Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers. Pesquisa Agropecuaria Brasileira 47: 1095- 1102. doi: 10.1590/S0100-204X2012000800009
  • Picchi S (2008). Management of Natura 2000 habitats *Coastal dunes with Juniperus spp 2250. European Commission. Technical Report 2008 06/24.
  • Pritchard JK Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945- 959.
  • Rawat YS, Everson CS (2012). Ecological status and uses of juniper species in the cold desert environment of the Lahaul Valley, north-western Himalaya, India. Journal of Mountain Science 9: 676-686. doi: 10.1007/s11629-012-2274-0
  • Raymond M, Rousset F (1995). GENEPOP Version 1.2: population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248-249. doi: 10.1093/oxfordjournals.jhered. a111573
  • Rumeu B, Sosa PA, Nogales M, Gonzalez-Perez MA (2013). Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.). Conservation Genetic Resources 5: 457-459. doi: 10.1007/ s12686-012-9827-y
  • Sánchez-Gómez P, Jiménez JF, Cánovas JL, Vera JB, Hensen I et al (2018). Genetic structure and phylogeography of Juniperus phoenicea complex throughout Mediterranean and Macaronesian regions: different stories in one. Annals of Forest Science 75:75. doi: 10.1007/s13595-018-0741-7
  • Sertse D, Gailing O, Eliades NG, Finkeldey R (2013). Transferability and application of microsatellites (SSRs) from Juniperus communis L. to Juniperus procera Hochst. Ex endl. Open Journal of Genetics 3: 115-126. doi: 10.4236/ojgen.2013.32015
  • Sheikh I, Sharma P, Verma SK, Kumar S, Kumar N et al. (2018). Development of intron targeted amplified polymorphic markers of metal homeostasis genes for monitoring their introgression from Aegilops species to wheat. Molecular Breeding 38: 47. doi: 10.1007/s11032-018-0809-y
  • Staub JE, Serquen FC, Gupta M (1996). Genetic markers map consrtuction and their application in plant breeding. Horticultural. Science 31: 729-741. doi: 10.21273/ HORTSCI.31.5.729
  • Teixeira H, Rodriguez-Echeverria S, Nabais C (2014). Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR. Plos One 9: e88996. doi: 10.1371/journal.pone.0088996
  • Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016). Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology 39 (3): 312-328. doi: 10.1590/1678- 4685-GMB-2016-0027
  • Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P et al. (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology 31 :219- 227. doi: 10.1007/s10980-015-0312-3
  • Xiong F, Liu J, Zhong R, Jiang J, Han Z et al. (2013). Intron targeted amplified polymorphism (ITAP), a new sequence related amplified polymorphism-based technique for generating molecular markers in higher plant species. Plant Omics Journal 6: 128-134.
  • Yang HX, Luo R, Zhao FC, Liu TY, Liu CX et al (2013). Constructing genetic linkage maps for Pinus elliottii var. elliottii and Pinus caribaea var. hondurensis using SRAP, SSR, EST and ISSR markers. Trees 27: 1429-1442. doi: 10.1007/s00468-013-0890-0
  • Yücedağ C, Gailing O (2013). Genetic variation and differentiation in Juniperus excelsa M. Bieb. populations in Turkey. Trees 27: 547-554. doi: 10.1007/s00468-012-0807-3
  • Zhang Q, Yang YZ, Wu GL, Zhang DY, Liu JQ (2008). Isolation and characterization of microsatellite DNA primers in Juniperus przewalskii Kom (Cupressaceae). Conservation Genetics 9: 767-769. doi: 10.1007/s10592-007-9387-y