Genetic diversity analysis reveals weak population structure in invasive Trianthema portulacastrum L. at Fayoum depression, Egypt

Genetic diversity analysis reveals weak population structure in invasive Trianthema portulacastrum L. at Fayoum depression, Egypt

Trianthema portulacastrum L. (Aizoaceae) is a common weed associated with cultivated crops. It is an exotic weed that originated in South Africa and is spreading all over the world. Thirty-five accessions were collected from six populations at Fayoum depression (FD), Egypt. Molecular analyses of start codon targeted (SCoT) markers were performed to identify genotypic variation among collected populations. The effectiveness of employing SCoT markers was demonstrated by the high percentage of polymorphisms. These markers revealed high genetic diversity, as well as high levels of genetic differentiation (GST), elevated gene flow (Nm) (0.195 and 2.052, respectively), high variation among a population and lower variation within populations. Linkage disequilibrium analysis supported the presence of sexual and clonal reproduction of T. portulacastrum in different populations. The data confirmed the weak population structure of T. portulacastrum demonstrated in this study via different tools such as STRUCTURE, Minimum spanning network (MSN), and discriminant analysis of principal components (DAPC) and confirmed gene flow between populations. Based on our results, we hypothesize that FD was invaded multiple times by T. portulacastrum facilitated by both local adaptation and phenotypic plasticity.

___

  • Abd-Elgawad M, Shendi MM, Sofi DM, Abdurrahman HA, AM A (2013). Geographical distribution of soil salinity, alkalinity, and calcicity within Fayoum and Tamia districts, Fayoum Governorate, Egypt. In: Shahid SA, Abdelfattah, MA, Taha, FK, (editors) Developments in soil salinity assessment and reclamation: innovative thinking and use of marginal soil and water resources in irrigated agriculture. Dordrecht, The Netherlands: Springer pp. 219-236. doi:10.1007/978-94-007-5684-7_14
  • Agarwal A, Gupta V, Haq SU, Jatav PK, Kothari S et al. (2019). Assessment of genetic diversity in 29 rose germplasms using SCoT marker. Journal of King Saud University Science 31 (4):780-788. doi:10.1016/j.jksus.2018.04.022
  • Amiryousefi A, Hyvönen J, Poczai P (2018). iMEC: online marker efficiency calculator. Appl Plant sciences 6 (6):e01159. doi. org/10.1002/aps3.1159
  • Avise JC, Hamrick JL (1996). Conservation genetics: case histories from nature. New York, New York, USA: Columbia University Press.
  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013). Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Genetic Resources and Crop Evolution 529 (1):21-26. doi:10.1016/j. gene.2013.07.096
  • Bhawna, Abdin M, Arya L, Verma M (2017). Use of SCoT markers to assess the gene flow and population structure among two different populations of bottle gourd. Plant Gene (9):80-86. doi:10.1016/j. plgene.2016.09.001
  • Branch HA, Sage RF (2018). Reproductive heat tolerance in a Mojave Desert annual plant, Trianthema portulacastrum. American Journal of Botany 105 (12):20182024.doi:10.1002/ajb2.1199
  • Bruvo R, Michiels NK, D’souza TG, Schulenburg H (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology 13 (7):2101-2106. doi:10.1111/j.1365-294X.2004.02209.x
  • Chhajer S, Jukanti AK, Kalia RK (2017). Start codon targeted (SCoT) polymorphism-based genetic relationships and diversity among populations of Tecomella undulata (Sm.) Seem—an endangered timber tree of hot arid regions. Tree Genet Genomes 13 (4):84. doi:10.1007/s11295-017-1169-1
  • Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE (2017). Invasions and extinctions through the looking glass of evolutionary ecology. Philosophical Transactions of the Royal Society B 372 (1712):20160031. doi:10.1098/rstb.2016.0031
  • Collard BC, Mackill DJ (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant molecular biology reporter 27 (1):86. doi:10.1007/s11105-008-0060-5
  • Cronk QC, Fuller JL (2014). Plant invaders:the threat to natural ecosystems.London, UK: Routledge, Earthscan Publications Limited.
  • Dalio JS (2015). Foraging behaviour of Apis mellifera on Trianthema portulacastrum. Journal of Entomology Zoology Studies 3 (2):105-108.
  • Earl D, vonHoldt B (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4 (2):359-361. doi:10.1007/s12686-011-9548-7
  • El-Zeiny AM, Effat HA (2017). Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sensing Applications: Society and Environment (8):266-277. doi:10.1016/j.rsase.2017.10.003
  • Elgamal MM, El-Alfy KS, Abdallah MG, Abdelhaleem FS, Elhamrawy AM (2017). Restoring Water and Salt Balance of Qarun Lake, Fayoum, Egypt. Mansoura Engineering Journal 42 (4):1-14. doi:10.21608/BFEMU.2020.97674
  • Etminan A, Pour-Aboughadareh A, Noori A, Ahmadi-Rad A, Shooshtari L, Mahdavian Z, Yousefiazar-Khanian M (2018). Genetic relationships and diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnol Biotechnol Equip 32 (3):610-617. doi: 10.1080/13102818.2018.1447397
  • Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14 (8):2611-2620.
  • Fahad S, Hussain S, Saud S, Hassan S, Muhammad H et al.(2014). Consequences of narrow crop row spacing and delayed Echinochloa colona and Trianthema portulacastrum emergence for weed growth and crop yield loss in maize. Weed Research 54 (5):475-483. doi:10.1111/wre.12104
  • Fahmy GM, Moussa SA, Farrag HF, Rehem RAAE (2019). Seed and germination traits of the summer weed Trianthema portulacastrum L. Egyptian Journal Experimental Biology (Bot) 15 (2):235-242. doi:10.5455/egyjebb.20190618082647
  • Grünwald NJ, Everhart SE, Knaus B, Kamvar ZN (2017). Best practices for population genetic analyses. Phytopathology 107 (9):1000-1010. doi:10.1094/PHYTO-12-16-0425-RVW
  • Gupta V, Jatav PK, Haq SU, Verma KS, Kaul VK et al. (2019). Translation initiation codon (ATG) or SCoT markersbased polymorphism study within and across various Capsicum accessions: insight from their amplification, crosstransferability and genetic diversity. Journal of Genetics 98 (2):1-12. doi:10.1007/s12041-019-1095-0
  • Hamrick J, Godt M, Murawski D, Loveless M (1991). Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk D, Holsinger, KE., (editors) Genetics conservation of rare plants.New York, New York, USA: Oxford University Press, pp. 75– 86.
  • Hassan N, Thiede J, Liede-Schumann S (2005). Phylogenetic analysis of Sesuvioideae (Aizoaceae) inferred from nrDNA internal transcribed spacer (ITS) sequences and morphological data. Plant Systematics and Evolution 255 (3-4):121-143. doi:10.1007/s00606-005-0357x
  • Hernández-Ledesma P, Berendsohn WG, Borsch T, Von Mering S, Akhani H et al. (2015). A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 45 (3):281-383.doi:10.3372/ wi.45.45301
  • Ibrahim M, Mohamed AS, Teleb S, Ibrahim S, Tantawy M (2017). Taxonomic and molecular study on some Asian cultivars of Triticum aestivum L. Taeckholmia 37 (1):16-29. doi: 10.21608/ TAEC.2017.11932
  • Jombart T (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24 (11):1403-1405.
  • Kamvar Z, Tabima J, Grünwald N (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2013 1–14. doi:10.7717/ peerj.281
  • Kaur M, Aggarwal N (2017). Trianthema portulacastrum L.- the noxious weed and its control. Advances in plants agriculture research 6 (3):00213.
  • Kolde R, Kolde MR (2015). Package ‘pheatmap’. R package 1 (7):790.
  • Li F, van Kleunen M, Li J, Liu X, Gao K et al (2019). Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biological Invasions 21 (6):2191-2209. doi:10.1007/ s10530-019-01966-2
  • Manhart JR, Rettig JH (1994). Gene sequence data. In: Behnke HD. MTJ (editors) Caryophyllales.Berlin, Heidelberg: Springer, pp. 235-246. doi:10.1007/978-3-642-78220-6_10
  • Marczewski T, Ma Y-P, Zhang X-M, Sun W-B, Marczewski AJ (2016). Why is population information crucial for taxonomy? A case study involving a hybrid swarm and related varieties. AoB Plants 8 1-17. doi:10.1093/aobpla/plw070
  • Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89 (3):583-590. doi:10.1093/genetics/89.3.583
  • Osbornová-Kosinová J (1984). Notes on the synanthropic plants of Egypt. Folia Geobotanica et Phytotaxonomica 19 (3):279-285. doi:10.1007/BF02853091
  • Peakall R, Smouse P (2012). GenAlEx Tutorials-Part 2: Genetic distance and analysis of molecular variance (AMOVA). http:// www.anu.edu.au/BoZo/GenAlEx/
  • Pichancourt JB, Van Klinken RD (2012). Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant. PloS one 7 (2):e32323. doi:10.1371/journal.pone.0032323
  • Piry S, Luikart G, Cornuet JM (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity 90 (4):502-503. doi:10.1093/jhered/90.4.502
  • Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155 (2):945-959.
  • R_Core_Team (2018). R: A Language and Environment for Statistical Computing. In. Vienna, Austria: R Foundation for Statistical Computing.
  • Rajesh M, Sabana A, Rachana K, Rahman S, Jerard B et al. (2015). Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. Biotech 5 (3):999-1006. doi: 10.1007/s13205-015-0304-7
  • Sambrook J, Fritsch F, Maniatis T (1989). Molecular Cloning – A laboratory manual, Second edition. edn.New York: Cold Spring Harbor Laboratory Press.
  • Satya P, Karan M, Jana S, Mitra S, Sharma A et al. (2015). Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta gene 3 62-70. doi:10.1016/j.mgene.2015.01.003
  • Shaltout K, Baraka DM, Shehata MN, Ahmed D, Arief OM (2013). Distributional behavior and growth performance of Trianthema portulacastrum L.(Aizoaceae) in Nile Delta. Egyptian Journal of Botany 183-199.
  • Shekhawat JK, Rai MK, Shekhawat N, Kataria V (2018). Start codon targeted (SCoT) polymorphism for evaluation of genetic diversity of wild population of Maytenus emarginata. Industrial Crops and Products 122 202-208. doi:10.1016/j. indcrop.2018.05.074
  • Slatkin M (2008). Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9 (6):477-485. doi:10.1038/nrg2361
  • Soghani ZN, Rahimi M, Nasab MA, Maleki M (2018). Grouping and genetic diversity of different watermelon ecotypes based on agro-morphological traits and ISSR marker. Iheringia Série Botânica 73 (1):53-59.
  • Sultan SE (2000). Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5 (12):537-542. doi:10.1016/S1360-1385(00)01797-0
  • Sun Q, Liu Y, Salem A, Marks L, Welc F et al. (2019). Climate-induced discharge variations of the Nile during the Holocene: Evidence from the sediment provenance of Faiyum Basin, north Egypt. Glob Planet 172 200-210. doi:10.1016/j.gloplacha.2018.10.005
  • Tabasi M, Sheidai M, Hassani D, Koohdar F (2020). DNA fingerprinting and genetic diversity analysis with SCoT markers of Persian walnut populations (Juglans regia L.) in Iran. Genetic Resources and Crop Evolution 1-11. doi:10.1007/ s10722-020-00914-7
  • Täckholm V (1974). Students’ flora of Egypt, 2nd.
  • Tigano A, Friesen VL (2016). Genomics of local adaptation with gene flow. Molecular Ecology 25 (10):2144-2164. doi:10.1111/ mec.13606
  • Urquía D, Gutierrez B, Pozo G, Pozo MJ, Espín A et al. (2019). Psidium guajava in the Galapagos Islands: population genetics and history of an invasive species. PloS one 14 (3):e0203737. doi:10.1371/journal.pone.0203737
  • Vicente S, Máguas C, Trindade H (2018). Genetic diversity and differentiation of invasive Acacia longifolia in Portugal. Web Ecology 18 (1):91-103. doi:10.5194/we-18-91-2018
  • Ward SM, Gaskin JF, Wilson LM (2008). Ecological genetics of plant invasion: what do we know? Invasive Plant Sci Manag 1 (1):98- 109. doi :10.1614/IPSM-07-022.1
  • Wu Q, Zang F, Ma Y, Zheng Y, Zang D (2020). Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers. Global Ecology and Conservation 24 e01329.doi:10.1016/j. gecco.2020.e01329
  • Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV et al.(2011). EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genomes 7 (1):207-219. doi:10.1007/s11295-010-0326-6
  • Yang S, Xue S, Kang W, Qian Z, Yi Z (2019). Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PloS one 14 (2):e0211471. doi :10.1371/journal. pone.0211471
  • Yeh F, Boyle T, Rongcai Y, YE Z (1999). POPGENE: Microsoft window-based freeware for population genetic analysis In. Edmonton, Alberta,Canada: University of Alberta Press.