First genome size assessment in the genus Peganum and in the family Nitrariaceae: Iberian and North African data on Peganum harmala, including an intensive sampling in Tunisia

First genome size assessment in the genus Peganum and in the family Nitrariaceae: Iberian and North African data on Peganum harmala, including an intensive sampling in Tunisia

Peganum harmala is a halonitrophilous perennial herb that is relevant in the landscape of steppe, semidesert, and desert territories in southern Europe, northern Africa, and southwestern Asia. We present here data on the nuclear DNA amount assessment in one Iberian and 17 Tunisian populations of this species. The 2C values, belonging to the very small genome category, ranged from 0.61 to 0.67 pg. These data are the first on genome size for the species and for the whole genus and the whole family. In addition, the somatic chromosome number (2n = 24) has been counted in one population, confirming previous reports and constituting the first one in a Tunisian accession of the species. The results show a high degree of homogeneity of the character studied within the species. These new data, filling a gap in genome size knowledge at family level, together with the specific homogeneity in genome size in a large area, could be relevant for further large-reach analyses on genome size evolution.

___

  • Bennett MD (1972). Nuclear DNA content and minimum generation time in herbaceous plants. P Roy Soc Lond B Bio 181: 109-135.
  • Bennett MD, Leitch IJ (2005). Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot-London 95: 45-90.
  • Díaz Lifante Z (1991). Números cromosomáticos para la flora española, 630-642. Lagascalia 16: 328-333 (in Spanish).
  • Doležel J, Binarova P, Lucretti S (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31: 113-120.
  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003). Nuclear DNA content and genome size of trout and human. Cytometry 51: 127-128.
  • Gable RS (2007). Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction 102: 24-34.
  • Greilhuber J, Leitch IJ (2013). Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, editors. Plant Genome Diversity. Volume 2: Physical Structure, Behavior and Evolution of Plant Genomes. Vienna, Austria: Springer Verlag, pp. 323-344.
  • Güemes J, Sánchez-Gómez P (2015). Peganum L. In: Muñoz F, Navarro C, Quintanar A, Buira A, editors. Flora Iberica, Vol. IX, Rhamnaceae-Polygalaceae. Madrid, Spain: Real Jardín Botánico, CSIC, pp. 148-151.
  • Hilu KW (1979). In IOPB chromosome number reports LXIV. Taxon 28: 395.
  • Knight CA, Molinari NA, Petrov DA (2005). The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot-London 95: 177-190.
  • Koyuncu O, Öztürk D, Erkara IP, Yaylaci ÖK, Ardiç M (2009). Production and usage of different types of ash-cakes from Peganum harmala L. (Zygophyllaceae) in Anatolia, Turkey. Bangladesh J Botany 38: 211-213.
  • Le Floc’h E, Boulos L, Vela E (2010). Catalogue synonymique commenté de la flore de la Tunisie. Tunis: République Tunisienne, Ministère de l’Environnement et du Développement Durable, Banque Nationale de Gènes.
  • Leitch IJ, Soltis ED, Soltis PS, Bennett, MD (2005). Evolution of DNA amounts across land plants (Embryophyta). Ann Bot-London 95: 207-217.
  • Lepers-Andrzejewski S, Siljak-Yakovlev S, Brown SC, Wong M, Dron M (2011). Diversity and dynamics of plant genome size: an example of polysomaty from a cytogenetic study of Tahitian vanilla (Vanilla × tahitensis, Orchidaceae). Am J Bot 98: 986- 997.
  • Levin DA (2002). The role of chromosomal change in plant evolution. Oxford, UK: Oxford University Press.
  • Lorenzo-Andreu A (1951). Cromosomas de plantas de la estepa de Aragón. III. Anales de la Estación Experimental de Aula Dei 2: 195-203 (in Spanish).
  • Ma XH, Qin RL, Xing WB (1984). Chromosome observations of some medical plants in Xinjiang. Acta Phytotaxon Sin 22: 243- 249.
  • Ma XH, Ma XQ, Li N (1990). Chromosome observation of some drug plants in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica 10: 203-210.
  • Magulaev AJ (1979). The chromosome numbers of flowering plants in the Northern Caucasus. Part 3. In: Galushko AI, editor. Flora Severnogo Kavkaza i voprosi eyo istorii - Flora of the North Caucasus and questions of its history. Stavropol, Strvropolskii Gossudarstvennii Pedagogicheskii Institut, vol 3, pp. 101-106.
  • Niroumand MN, Farzaei MH, Amin G (2015). Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. J Tradit Chin Med 35: 104- 109.
  • Pellicer J, Garcia S, Canela MÁ, Garnatje T, Korobkov AA, Twibell JD, Vallès J (2010). Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. Plant Biol 12: 820-830.
  • Pellicer J, Hidalgo O, Garnatje T, Kondo K, Vallès J (2014). Life cycle versus systematic placement: phylogenetic and cytogenetic studies in annual Artemisia (Asteraceae, Anthemideae). Turk J Bot 38: 1112-1122.
  • Pottier-Alapetite G (1979-1981). Flore de la Tunisie. 2 vols. Tunis: Imprimerie Officielle.
  • Ruíz de Clavijo E (1991). Notas cariológicas sobre algunas especies norteafricanas. Acta Botanica Malacitana 16: 449-454 (in Spanish).
  • Stevens PF (2001, onward). Angiosperm phylogeny website, version 8, June 2007 [more or less continuously updated]. Website http://www.mobot.org/MOBOT/research/APweb [accessed 26 August 2016].
  • Stuessy TF (2011). Multiple sources of comparative data for creative monography. In: Stuessy TF, Lack HW, editors. Monographic plant systematics. Fundamental assessment of plant biodiversity. Ruggell, Liechtenstein: ARG Gantner Verlag KG, pp. 33-47.
  • Wang X, Zhang T, Wen Z, Xiao H, Yang Z, Chen G, Zhao X (2011). The chromosome number, karyotype and genome size of the desert plant diploid Reaumuria soongarica (Pall.) Maxim. Plant Cell Rep 30: 955-964.