Embryological and cytological features of Gagea bohemica (Liliaceae)

The present study describes the developmental features of the embryo sac and ovular structures, particularly the obturator, during development in Gagea bohemica (Zauschn.) Schult. & Schult. f. The nucellar epidermis is poorly developed and composed of 1-2 layers of cuboidal cells. The tissue at the chalazal end of the nucellus differentiates into a hypostase. The micropyle is formed by the inner integument and composed of 4-5 cell layers that include starch grains. The functional megaspore results in an 8-nucleated embryo sac and conforms to a tetrasporic, Fritillaria L. type. Cytoplasmic nucleoloids consisting of protein and RNA are obvious during megasporogenesis. The obturator attracts attention during embryo sac development. Cytochemical tests indicated that the cells of the obturator present a strong reaction in terms of insoluble polysaccharide, lipid, and protein. Obturator cells are coated by a smooth and thick surface layer that starts to accumulate partially and then merges. Ultrastructural studies reveal that obturator cells are rich in rough endoplasmic reticulum, polysomes, plastids with osmiophilic inclusions, dictyosomes with large vesicles, mitochondria, and osmiophilic secretory granules. After fertilisation, the vacuolisation in obturator cells increases by fusing small vacuoles to form larger ones. Some of the small vacuoles contain electron dense deposits. Afterwards, the obturator cells shrink and disappear.

Embryological and cytological features of Gagea bohemica (Liliaceae)

The present study describes the developmental features of the embryo sac and ovular structures, particularly the obturator, during development in Gagea bohemica (Zauschn.) Schult. & Schult. f. The nucellar epidermis is poorly developed and composed of 1-2 layers of cuboidal cells. The tissue at the chalazal end of the nucellus differentiates into a hypostase. The micropyle is formed by the inner integument and composed of 4-5 cell layers that include starch grains. The functional megaspore results in an 8-nucleated embryo sac and conforms to a tetrasporic, Fritillaria L. type. Cytoplasmic nucleoloids consisting of protein and RNA are obvious during megasporogenesis. The obturator attracts attention during embryo sac development. Cytochemical tests indicated that the cells of the obturator present a strong reaction in terms of insoluble polysaccharide, lipid, and protein. Obturator cells are coated by a smooth and thick surface layer that starts to accumulate partially and then merges. Ultrastructural studies reveal that obturator cells are rich in rough endoplasmic reticulum, polysomes, plastids with osmiophilic inclusions, dictyosomes with large vesicles, mitochondria, and osmiophilic secretory granules. After fertilisation, the vacuolisation in obturator cells increases by fusing small vacuoles to form larger ones. Some of the small vacuoles contain electron dense deposits. Afterwards, the obturator cells shrink and disappear.

___

  • Alché JD, Fernández MC & Rodríguez-García MI (1994). Cytochemical features common to nucleoli and cytoplasmic nucleoloids of Olea europaea meiocytes: detection of rRNA by in situ hybridization. Journal of Cell Science 107: 621-629.
  • Bambacioni V (1928). Ricerche sulla ecologia e sulla embriologia di Fritillaria persica L. Annals of Botany 18: 7-37.
  • Battaglia E (1986). Embryological questions: 8. Euphorbia dulcis type versus Fritillaria type. Annals of Botany 44: 97-136.
  • Batygina TB (2002). Embryology of Flowering Plants, Terminology and Contents. Einfi eld, NH, USA: Science Publishers Inc.
  • Bohdanowicz J & Lewandowska B (1999). Participation of endoplasmic reticulum in the unequal distribution of plastids during generative cell formation in Gagea lutea (L.) Ker-Gaw. (Liliaceae). Acta Biologica Cracoviensia 41: 177-183.
  • Bohdanowicz J, Szczuka E, Swierczynska J, Sobieska J & Koscinska- Pajak M (2005). Distribution of microtubules during regular and distributed microsporogenesis and pollen grain development in Gagea lutea (L.) Ker-Gaw. (Liliaceae). Acta Biologica Cracoviensia 42: 89-96.
  • Bor J & Bauman F (1974). Development of ovule and integuments in Euphorbia milii and Codiaeum variegatum. Phytomorphology 24: 280-296.
  • Caparelli KF, Peruzzi L & Cesca G (2006). A comparative analysis of embryo-sac development in three closely-related Gagea Salisb. species (Liliaceae), with some consideration on their reproductive strategies. Plant Biosystems 140: 115-122.
  • Capus G (1978). Anatomie du tissue conducteur. Annales des Sciences Naturelles Botanique 7: 209-291.
  • Carano E (1926). Ulteriori osservazioni su Euphorbia dulcis L., in rapport al suo comportamento apomittico. Annals of Botany 17: 50-79.
  • Chiarugi A (1927). Il gametofi to femmineo delle angiosperme nei suoi vari tipi di costruzione e sviluppo. Nuovo Giornale Botanico Italiano 34: 1-133.
  • Cresti M, Blackmore S & van Went JL (1992). Atlas of Sexual Reproduction in Flowering Plants. New York: Springer-Verlag.
  • Coşkun ZM & Ünal M (2010). Embryological and cytochemical features of Scilla autumnalis L. Turkish Journal of Botany 34: 291-301.
  • Davis GL (1966). Systematic Embryology of the Angiosperms. New York: John Wiley and Sons.
  • Dickinson HG & Potter U (1978). Cytoplasmic changes accompanying the female meiosis in Lilium longifl orum Th unb. Journal of Cell Science 29: 147-169.
  • Dickinson HG & Heslop-Harrison J (1970). Th e ribosome cycle, nucleoli, and cytoplasmic nucleoloids in the meiocytes of Lilium. Protoplasma 69: 187-200.
  • Feder N & O’Brien TP (1968). Plant microtechnique: some principles and new methods. American Journal of Botany 55: 123-142.
  • Fisher DB (1968). Protein staining of ribboned epon sections for light microscopy. Histochemie 16: 92-96.
  • İkinci N (2011). Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turkish Journal of Botany 35: 319-330.
  • İsmailoğlu I, Coşkun ZM, Keskin M & Ünal M (2010). Development and cytochemical studies of embryo sac, embryo and endosperm in Allium peroninianum. Pakistan Journal of Botany 42: 2711-2718.
  • İsmailoğlu I & Ünal M (2011). Structural and cytochemical analysis of female reproductive development in Ornithogalum sigmoideum Freyn & Sint. Caryologia 64: 99-109.
  • Jensen WA (1962). Botanical Histochemistry. San Francisco: WH Freeman and Co.
  • Joshi AC (1940). Development of the embryo-sac of Gagea fascicularis Salisb. Bulletin of the Torrey Botanical Club 67: 155-158.
  • Kusanagi A & Kawano S (1975). Cytochemical characteristics and behavior of nucleoloids in the meiocytes of Maianthemum dilalatum (Wood) Nelson & Macbride. La Kromosoma 100: 3099-3107.
  • Levichev IG (1999). Th e morphology of Gagea Salisb. (Liliaceae) I. Subterranean organs. Flora 194: 379-392.
  • Li DH, Yang X, Cui KM, Li ZL & Lee CL (2003). Morphological changes in nucellar cells undergoing programmed cell death (PCD) during pollen chamber formation in Ginkgo biloba. Acta Botanica Sinica 45: 53-63.
  • Mabberley DJ (1997). Th e Plant Book. London: Cambridge University Press.
  • Martinoli G (1940). La prioritá della denominazione “tipo Euphorbia dulcis” (1927) sulla denominazione “tipo Fritillaria” (1937) Nuovo Giornale Botanico Italiano 47: 464-468.
  • Pearse AGE (1961). Histochemistry, Th eoretical and Applied. London: J. A. Churchill Ltd.
  • Peruzzi L & Aquaro G (2005). Contribution to the cytotaxonomical knowledge of Gagea Salisb. (Liliaceae). II. Further karyological studies on Italian populations. Candollea 60: 237-253.
  • Peruzzi L (2003). Contribution to the cytotaxonomical knowledge of Gagea Salisb. (Liliaceae) sect. Foliatae A. Terracc. and synthesis of karyological data. Caryologia 56: 115-128.
  • Peterson A, Harpke D, Peruzzi L, Tison JM, John H & Peterson J (2010). Gagea bohemica (Liliaceae), a highly variable monotypic species within Gagea sect. Didymobulbos. Plant Biosystems 144: 308-322.
  • Rao CV (1959). Contributions to the embryology of Palmae. I. Sabaleae. Proceedings of the National Institutes of Sciences of India 25: 143-169.
  • Sato S, Jones K, Alché JD & Dickinson HG (1991). Cytoplasmic nucleoloids of Lilium male reproductive cells contain rDNA transcripts and share features of development with nucleoli. Journal of Cell Science 100: 109-118.
  • Stuessy TF (2009). Plant Taxonomy: Th e Systematic Evaluation of Comparative Data. New York: Columbia University Press.
  • Tekşen M & Aytaç Z (2011). Th e revision of the genus Fitillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turkish Journal of Botany 35(5): 447-478.
  • Tamura MN (1998). Liliaceae. In: Kubitzki K (ed.) Th e Families and Genera of Vascular Plants. III. Flowering Plants Monocotyledons, Lilianae (except Orchidaceae), pp. 343-353. Berlin: Springer- Verlag.
  • Tilton VR & Horner HT (1980). Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. American Journal of Botany 67: 1113- 1131.
  • Van Rensburg JGJ & Robbertse PJ (1988). Seed development of Ornithogalum dubium, with special reference to fertilization and the egg apparatus. South African Journal of Botany 54: 196- 202.
  • Vardar F & Ünal M (2012). Ultrastructural aspects and programmed cell death in the tapetal cells of Lathyrus undulatus Boiss. Acta Biologica Hungarica 63(1): 56-70.
  • Vardar F & Ünal M (2011). Development and programmed cell death in the fi lament cells of Lathyrus undulatus Boiss. Caryologia 64: 163-170.
  • Williams E, Heslop-Harrison J & Dickinson HG (1973). Th e activity of the nucleolus organizing region and origin of cytoplasmic nucleoloids in meiocytes of Lilium. Protoplasma 17: 79-93.
  • Zarrei M & Zarre S (2005). Pollen morphology of the genus Gagea (Liliaceae) in Iran. Flora 200: 96-108.
  • Zhou QY, Jin XB & Fu DZ (2004). Developmental morphology of obturator and micropyle pathway of pollen tube growth in ovary in Phellodendron amurense (Rutaceae). Acta Botanica Sinica 46: 1434-1442.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Growth and photochemical responses of three crop species treated with textile azo dyes

Nuran ÇİÇEK, Banu EFEOĞLU, Deniz TANYOLAÇ, Yasemin EKMEKÇİ, Reto Jörg STRASSER

A new species of Marrubium (Lamiaceae) from Central Anatolia, Turkey

Zeki AYTAÇ, Gencay AKGÜL, Murat EKİCİ

Allium shirnakiense, sect. Melanocrommyum (Liliaceae), a new species from South-eastern Turkey

Lütfi BEHÇET, Mustafa RÜSTEMOĞLU

Biogeochemical interrelations between the Çayırhan oil shales and some plants growing on them (Turkey)

Berna Yavuz PEHLİVANLI, Şükrü KOÇ, Esra ERGİN, Ali SARI, Leyla AÇIK, Mecit VURAL

Trace metal contents of some wild-growing mushrooms in Bigadiç (Balıkesir), Turkey

İsmail ŞEN, Hakan ALLI, Bekir ÇÖL, Mustafa ÇELİKKOLLU, Ahmet BALCI

Contributions to the macrofungal diversity of Uşak Province

Aziz TÜRKOĞLU, Dursun YAĞIZ

Contributions to the description and molecular properties of Erodium hendrikii Alpınar (Geraniaceae), endemic to Turkey

Kamil COŞKUNÇELEBİ, Salih TERZİOĞLU, Mustafa KARAKÖSE, Murat Erdem GÜZEL

Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants

Şükrü Serter ÇATAV, İsmail BEKAR, Büşra Seda ATEŞ, Gökhan ERGAN, Funda OYMAK, Elif Deniz ÜLKER, Çağatay TAVŞANOĞLU

Morphological cladistic analysis of some bifurcate hairy sections of Astragalus (Fabaceae) in Iran

Reza Sheikh Akbari MEHR, Ali Asghar MAASSOUMI, Abbas SAIDI, Shahrokh KAZEMPOUR OSALOO, Majid GHORBANI NOHOOJI

Anatomical analysis of red Juniper leaf (Juniperus oxycedrus) taken from Kopaonik Mountain, Serbia

Predrag Spasoje VASIC, Darko Vlajko DUBAK