Effects of salt stress and synthetic hormone polystimuline K on photosynhetic activity of Trianea bogotensis Karst

Bu çalışmada kinetin benzeri sentetik hormon olan Polystimulin K (PS-K)'nin tuz stresi uygulanmış Trianea bogotensis Karst'ın (Hydrocharitaceae) fotosentetik aktivitesi üzerine etkisi gösterildi. Değişik zaman sürelerinde (15, 30, 60, 360 ve 720 dakika) farklı tuz stresi (103, 155 ve 344 mM) uygulanmaları sonucunda , Fotosistem II (FS ll)'nin hassasiyetini incelemek için Klorofil değişken Floresans (Chlorophyll variable fluorescence) (Fv) ve yavaş floresans (Slow Fluorescence) (SF) kullanıldı. Fideler üzerindeki tuz (155 mM NaCl) uygulaması SF boyutunu yaklaşık % 50 engelledi. Fidelerin 30 dakika süreyle 20 mg/l PS-K uygulamasına tabi tutulması ve daha sonra tuz ortamına alınması sonucunda SF boyutunun yükselmesi saptanmıştır. Tuz stresi altında, bütün zaman süreçlerinde, Fv/Fo oranı azalma göstermektedir. Uygulamaların 60 dakika'sına kadar NaCl ve PS-K'nin bulunduğu ortamda Fv/Fo miktarı bir düşüş gösterip, daha sonra hafif bir yükseliş tespit edildi. Bu çalışmanın sonuçları PS-K'nin tuz stresi mekanizmasındaki koruyucu görevini anlamak açısından önemlidir.

Tuz stresi ve polistimulin K adlı sentetik hormon'un Trianea bogotensis Karst'ın fotosentetik aktivetesi üzerine etkileri

In the present study the effect of kinetin like synthetic hormone Polystimuline K (PS-K) on photosynthetic activity of salt stressed Trianea bogotensis Karst (Hydrocharitaceae) has been shown. Chlorophyll variable fluorescence (Fv) and slow fluo¬rescence (SF) have been used to investigate the sensitivity of Photosystem 11 (PS II) to different salt stress treatments (103, 155 and 344 mM), at different time courses (15, 30, 60, 360 and 720 minutes). Salt stress (155 mM NaCl) treatments of the seed¬lings inhibited the SF magnitude approximately to 50 %. Pretreatment of seedlings for 30 minutes in 20 mg/l PS-K followed by salt stress resulted in an increase in SF magnitude. Under salt stress the magnitude of Fv/Fo decreases within all time measurments. In the presence of NaCl and PS-K until 60 min. of treatment there was a decrease in Fv/Fo value, then a slight increase was ob¬served. The results of this study are important in understanding the protective function of PS-K on salt stress mechanism.

___

  • 1.Thomas, C.J., Mc Elwain, E.F., Bohnert, H.J., Convergent in-duction of osmotic stress responses abscisic acid, cytokinin andthe effects of NaCl, Plant Physiology, 100, 416-423, (1992).
  • 2.La Rosa, P.C., Hase Gawa, P.M., Rhodes, D., Dithero, J.M., Wat-ad, A. A. Bressan, R.A., Abscisic Acid stimulated osmotic adjust-ment and its involvement in adaptation of tobacco cell to NaCl,Plant Physiology, 85, 174-81 (1987).
  • 3.Hellebust, J.A., Osmoregulation, Annual Review of Plant Physiol-ogy, 27, 485-486 (1976).
  • 4.Greenway, H., Munns, R., Mechanisms of salt tolerance in non-halophytes, Annual Review of Plant Physiology, 31, 149-190(1980).
  • 5.Krist, G.O., Salinity tolerance of eukaryotic marine algae, AnnualReview of Plant Physiology and Plant Molecular Biology, 40, 21-53 (1990).
  • 6.Staal, M., Mathius, F.J. M., Elzenga, J.T.M., Overbeck, J.H.M.,Prins, H.B.A., Na+/H+ antiport activity in tonoplast vesicles of thesalt tolerant Plantago maritimi and the salt sensitive Plantago me-dia, Plant Physiology, 82, 173-84 (1991).
  • 7.Ward, J.M., Sze, H., Proton transport activity of the prufied vac-uolar H+ - ATPase from OTS: Direct Stimulation by Cl, PlantPhysiology, 99, 925-93 (1992).
  • 8.Adams, P., Thomas, J.C., Vernon, M.D., Bohnert, H.J., Jensen,G.R., Distinct cellular and organic responses to salt stress, PlantCell Physiology, 33, 092-159 (1992).
  • 9.Smillie, R.M., Nott, R., Salt tolerance in crop plants monitored bychlorophyll fluorescence in vivo, Plant Physiology, 70, 1049-54(1982).
  • 10.Lichtenthaler, H.K., Rinderle, U., Critical Revue of AnalyticalChemistry, 19 (suppl.) 529-585 (1988).
  • 11.Smillie, R.M., Gibbons, G.C., Heat tolerance and heat hardeningin crop plants measured by chlorophyll fluorescence, Calsberg Re-search Communication, 46, 395-03 (1981).
  • 12.Burke, J.J., Variation among species in the temperature de-pendence of the reappearance of variable fluorescence followingillumination, Plant Physiology 93, 652-56 (1990).
  • 13.Yücel, M., Burke, J.J., Nguyen, H.J., Inhibition and recovery ofPhotosystem II following exposure of wheat to heat shock, En-viromental and Experimental Botany, 32, 125-35, (1992).
  • 14.Krishnaraj, S., Mawson B.T., Yeung, E.C., Jhorpe, J.A., Utilizationof induction and quenching kinetics of chlorophyll fluorescencefor in vivo salinity screening studies in wheat (Triticum aestivumvass. Kharcia-65 and Fielder), Canadian Journal of Botany., 71,87-97 (1993).
  • 15.Lichtenthaler, H.K., Applications of Remote Sensing in Ag-riculture, 287-305 (1990).
  • 16.Sthapit, B.R., Witcombe, J.R., Wilson, J.M., Crop Science- 35,90-94 (1995).
  • 17.Hoagland, D.R., Arnon, D.I., From, H.J. Evans and A. Nason,Plant Physiology, 28: 233-254 (1953).
  • 18.Allahverdiev, S.R., Ali-zade, V.M., Ahundova, T.S., Alieva, F.K.,Electrophysiological aspects of Polystimulin-K action in connec-tion to the changes in medium salt composition, Plant Physiology(Russian), 38, 988-995 (1992).
  • 19.Peeler, J.C., Naylor, A.W., The influence of dark adaptation tem-perature on the reappearance of variable fluorescence following il-lumination, Plant Physiology, 86, 152-154 (1988).
  • 20.Chernyadiev, I.N., Kondratskaya, A., Doman, G., Effects of cy-tokinin (6-BAP) on the photosynthetic of pea plants in the absenceof the light, Applied Biochemistry and Microbiology, 108- 122(1990).