Effect of ash carbon nanofibers on GABA shunt pathway in germinating seeds of tomato (Lycopersicon esculentum Mill., c.v. Rohaba.) under salt stress

Effect of ash carbon nanofibers on GABA shunt pathway in germinating seeds of tomato (Lycopersicon esculentum Mill., c.v. Rohaba.) under salt stress

The aim of the current study was to examine the effect of black ash carbon nanofibers (CNFs) on gamma-aminobutyric acid(GABA) shunt pathway in germinating seeds of tomato (Lycopersicon esculentum Mill., c.v. Rohaba) under salt stress. Seed’s germinationpattern, seed moisture content, GABA shunt metabolite levels (GABA, Glutamate and Alanine), total proteins and total carbohydrates,and the level of oxidative damage in response to sodium chloride (NaCl) treatments were determined. A significant increase of moisturecontent in CNFs treated seeds associated with significant increases in germination percentage was found. Data also showed a significantincrease in GABA shunt metabolites in treating seeds compared to control seeds under different concentrations of NaCl. The totalprotein and carbohydrate levels significantly increased with positive correlation in control and treated seeds as NaCl concentrationincreased. A significant increase in MDA level was found in both treated and control seeds under salt stress. However, treated seedsshowed lower MDA accumulation compared to control seeds. Our results suggested that the elevation of GABA in CNFs treated seedswas to maintain metabolic stability under salt stress, while, in control seeds, GABA elevation was to mitigate the effect of salt stress.CNFs activated GABA shunt, which might be involved in reduction of MDA accumulation and alleviation of oxidative damage undersalt stress. In conclusion, CNFs enhanced tomato seed germination during salt stress.

___

  • Aggarwal S, Singh GR, Yadav BR (2009). Utilization of fly ash for crop production: Effect on the growth of wheat and sorghum crops and soil properties. Journal of Agricultural Physics 9:20- 23.
  • Aghdam MT, Mohammadi H, Ghorbanpour M (2016). Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany 39 (1): 139-146. doi:10.1007/s40415-015- 0227-x
  • Akihiro T, Koike S, Tani R, Tominaga T, Watanabe S et al. (2008). Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant and Cell Physiology 49 (9):1378- 1389. doi: 10.1093/pcp/pcn113
  • Al Hassan M, Fuertes MM, Sanchez FJ, Vicente O, Boscaiu M (2015). Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horti Agrobotanici ClujNapoca 43 (1): 1-11. doi: 10.15835/nbha4319793
  • Alqarawi AA, Hashem A, Elsayed FA, Al-Huqail AA, Alshahrani TS et al. (2016). Protective role of gamma amminobutyric acid on Cassia italica Mill under salt stress. Legume Research-An International Journal 39 (3): 396-404. doi:10.18805/lr.v0iOF.9561
  • AL-Quraan NA, AL-Share AT (2016). Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses. Biologia Plantarum 60 (1): 132-138. doi:10.1007/ s10535-015-0563-5
  • AL-Quraan NA, AL-Smadi ML, Swaleh AF (2015). GABA metabolism and ROS induction in lentil (Lens culinaris Medik) plants by synthetic 1, 2, 3-Thiadiazole compounds. Journal of Plant Interactions 10 (1):185-194. doi: 10.1080/17429145.2015.1056262
  • AL-Quraan NA, Sartawe FA, Qaryouti MM (2013). Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. Journal of Plant Physiology 170 (11):1003-1009. doi: 10.1016/j.jplph.2013.02.010
  • Amini F, Ehsanpour AA, Hoang QT, Shin JS (2007). Protein pattern changes in tomato under in vitro salt stress. Russian Journal of Plant Physiology 54 (4): 464-471. doi: 10.1134/ S102144370704005X
  • Amini F, Ehsanpour AA (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology 1 (4): 204-208. doi: 10.3844/ajbbsp.2005.204.208
  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015). Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Forest Research Papers 76 (4):350-359. doi: 10.1515/ frp-2015-0034
  • Ashraf MF, Foolad MR (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206-216. doi: 10.1016/j. envexpbot.2005.12.006
  • Ashraf M, Tufail M (1995). Variation in salinity tolerance in sunflower (Helianthus annum L.). Journal of Agronomy and Crop Science 174 (5): 351-362. doi: 10.1111/j.1439-037X.1995.tb01122.x
  • Bai Q, Chai M, Gu Z, Cao X, Li Y et al. (2009). Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chemistry 116 (1):152- 157. doi: 10.1016/j.foodchem.2009.02.022
  • Bartyzel I, Pelczar K, Paszkowski A (2003). Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biologia Plantarum 47 (2): 221-225. doi:10.1023/B:BIOP.0000022255.01125.99
  • Basu M, Pande M, Bhadoria PB, Mahapatra SC (2009). Potential fly-ash utilization in agriculture: a global review. Progress in Natural Science 19 (10): 1173-1186. doi:10.1016/j. pnsc.2008.12.006
  • Bennett SW, Adeleye A, Ji Z, Keller AA (2013). Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Research 47 (12): 4074-4085. doi: 10.1016/j.watres.2012.12.039
  • Bergmeyer HU (1983). Methods of Enzymatic Analysis. 2nd ed. Volume I.Weinheim, Germany: Verlag Chemie, pp 427.
  • Bolarin MC, Santa-Cruz A, Cayuela E, Perez-Alfocea F (1995). Shortterm solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. Journal of Plant Physiology 147 (3-4): 463-468. doi: 10.1016/S0176-1617(11)82184-X
  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M et al. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiology 153 (4): 1808-1822. doi: 10.1104/pp.110.157800
  • Burman U, Saini M, Kumar P (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry (4):605- 612. doi:10.1080/02772248.2013.803796
  • Campbell JK, Canene-Adams K, Lindshield BL, Boileau TW, Clinton SK et al. (2004). Tomato phytochemicals and prostate cancer risk. The Journal of nutrition 134 (12): 3486S-3492S. doi: 10.1093/jn/134.12.3486S
  • Cañas JE, Long M, Nations S, Vadan R, Dai L et al. (2008). Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry: An International Journal 27 (9):1922-1931. doi:10.1897/08-117.1
  • Carillo P (2018). GABA shunt in durum wheat. Frontiers in Plant Science 9: 100. doi:10.3389/fpls.2018.00100
  • Chakrabarty D, Chatterjee J, Datta SK (2007). Oxidative stress and antioxidant activity as the basis of senescence in chrysanthemum florets. Plant Growth Regulation 53 (2):107- 115. doi: 10.1007/s10725-007-9208-9
  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP et al. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany 58 (15-16):4245-4255. doi: 10.1093/ jxb/erm284
  • Cheng B, Li Z, Liang L, Cao Y, Zeng W et al. (2018). The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stressrelated genes expression in white clover. International Journal of Molecular Sciences 19 (9): 2520. doi:10.3390/ijms19092520
  • Chung HJ, Jang SH, Cho HY, Lim ST (2009). Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. LWT-Food Science and Technology. 42 (10):1712-1716. doi:10.1016/j.lwt.2009.04.007
  • Cuartero J, Fernández-Muñoz R (1998). Tomato and salinity. Scientia Horticulturae 78 (1-4): 83-125. doi:10.1016/S0304- 4238(98)00191-5
  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006). NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. Journal of Plant Physiology 163 (12):1247-1258. doi:10.1016/j. jplph.2005.09.012
  • Demiral T, Türkan I (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany 56 (1): 72-79. doi:10.1016/j. envexpbot.2005.01.005
  • Doganlar ZB, Demir K, Basak H, Gul I (2010). Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research 5 (15): 2056-2065. doi: 10.5897/AJAR10.258
  • Dresselhaus MS, Dresselhaus G, Jorio A (2004). Unusual properties and structure of carbon nanotubes. Annual Review of Materials Research 34: 247-278. doi: 10.1146/annurev. matsci.34.040203.114607
  • El-Baz FK, Mohamed AA, Aly AA (2003). Development of biochemical markers for salt stress tolerance in cucumber plants. Pakistan Journal of Biological Sciences 6:16-22. doi: 10.3923/pjbs.2003.16.22
  • El-Samad HM, Shaddad MA (1997). Salt tolerance of soybean cultivars. Biologia Plantarum 39 (2): 263-269. doi: 10.1023/A:1000309407275
  • El-Tayeb MA (2005). Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regulation 45 (3): 215-224. doi:10.1007/s10725-005 4928-1
  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA et al. (2011). Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiology 157 (3):1026-1042. doi: 10.1104/ pp.111.179986
  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56 (2): 678-86. doi: 10.1007/s11099-017-0717-0
  • Foolad MR (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue and Organ Culture 76 (2):101-119. doi: 10.1023/B:TICU.0000007308.47608.88
  • Forde BG, Lea PJ (2007). Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany 58 (9): 2339-2358. doi: 10.1093/jxb/erm121
  • Galili G, Tang G, Zhu X, Gakiere B (2001). Lysine catabolism: a stress and development super-regulated metabolic pathway. Current Opinion in Plant Biology 4 (3): 261-266. doi: 10.1016/S1369- 5266(00)00170-9
  • Gapińska M, Skłodowska M, Gabara B (2008). Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum 30 (1):11. doi: 10.1007/s11738-007-0072-z
  • Gerszberg A, Hnatuszko-Konka K (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation 83 (2): 175-198. doi: 10.1007/s10725-017-0251-x
  • Gogos A, Knauer K, Bucheli TD (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of agricultural and food chemistry 60 (39): 9781-9792. doi:10.1021/jf302154y
  • Haghighi M, Afifipour Z, Mozafarian M (2012). The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Sciences 6 (16): 87-90.
  • Harborne JB (1997). Biochemical plant ecology. In: Plant biochemistry (eds P.M. Dey and J.B. Harbone), New York, NY, USA: Academic press, pp. 503-516.
  • Hashem A, Abd-Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015). Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions 10 (1): 230-242. doi:10.1080/17429145.2015.105 2025
  • Hatami M, Ghorbanpour M (2014). Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turkish Journal of Biology 38 (1):130-139. doi:10.3906/biy-1304-64
  • Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189-198. doi:10.1016/0003-9861(68)90654-1
  • Hurkman WJ, Fornari CS, Tanaka CK (1989). A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a salt-sensitive cultivar of barley. Plant Physiology 90 (4):1444-1456. doi:10.1104/pp.90.4.1444
  • Kafkafi U, Bernstein N (1996) Root growth under salinity stress, In: Y. Waisel, A. Eshel and U. Kafkafi (eds.). Plant Roots: The Hidden Half.New York, N, USA: Marcel Dekker, Inc , pp. 435- 451.
  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011). How salinity affect germination and emergence of tomato lines. Journal of Biological and Environmental Sciences 5 (15):159-163.
  • Khan MR, Singh WN (2001). Effects of soil application of fly ash on the fusarial wilt on tomato cultivars. International Journal of Pest Management 47 (4): 293-297. doi: 10.1080/096708700110052059
  • Khedr AH, Abbas MA, Wahid AA, Quick WP, Abogadallah GM (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress. Journal of Experimental Botany 54 (392): 2553-2562. doi: 10.1093/jxb/erg277
  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z et al. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS nano 3 (10): 3221-3227. doi: 10.1021/nn900887m
  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS et al. (2011). Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences 108 (3): 1028-1033. doi: 10.1073/pnas.1008856108
  • Kim SK, Son TK, Park SY, Lee IJ, Lee BH et al. (2006). Influences of gibberellin and auxin on endogenous plant hormone and starch mobilization during rice seed germination under salt stress. Journal of Environmental Biology. 27 (2):181.
  • Koca H, Bor M, Özdemir F, Türkan İ (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60 (3):344-351. doi: 10.1016/j.envexpbot.2006.12.005
  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013). Mitigation of drought stress damage by exogenous application of a nonprotein amino acid γ–aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science 138 (5): 358-366. doi:10.21273/JASHS.138.5.358
  • Levy J, Sharoni Y (2004). Functions of tomato lycopene and its role in human health. Herbal Gram 62: 49-56.
  • Li Y, Bai Q, Jin X, Wen H, Gu Z (2010). Effects of cultivar and culture conditions on γ‐aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). Journal of the Science of Food and Agriculture 90 (1): 52-57. doi:10.1002/jsfa.3778
  • Li Z, Peng Y, Zhang X-Q, Ma X, Huang L-K et al. (2014). Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19 (11):18003-18024. doi:10.3390/molecules191118003
  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z et al. (2009). Carbon nanotubes as moleculartransporters for walled plant cells. Nano letters 9 (3): 1007-1010. doi:10.1021/nl803083u
  • Luo H, Yang L, Gao H, Xiao-Lei W, Liu H (2011). Physiological mechanism of GABA soaking to tomato seed germination and seedling development under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica 31 (11): 2235-2242.
  • Lutts S, Kinet JM, Bouharmont J (1996). Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regulation 19 (3): 207-218. doi:10.1007/bf00037793
  • Mae N, Makino Y, Oshita S, Kawagoe Y, Tanaka A et al. (2012). Accumulation mechanism of γ-aminobutyric acid in tomatoes (Solanum lycopersicum L.) under low O2 with and without CO2. Journal of Agricultural and Food Chemistry 60 (4): 1013-1019. doi:10.1021/jf2046812
  • Malekzadeh P, Khara J, Heydari R (2014). Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress. Physiology and Molecular Biology of Plants 20 (1): 133-137. doi:10.1007/s12298-013-0203-5
  • Matumoto Y, Ohno K, Hiraoka Y (1997). Studies on the utilization of functional food materials containing high levels of gammaaminobutyric acid (Part 1). Ehime Kougi Kenkyu Houkoku 35: 97-100.
  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Brazilian Journal of Plant Physiology 16 (1): 39-46. doi:10.1590/s1677- 04202004000100006
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9 (10): 490-498. doi:10.1016/j.tplants.2004.08.009
  • Mohammadi R, Maali-Amiri R, Mantri NL (2014). Effect of TiO 2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian Journal of Plant Physiology 61 (6): 768-775. doi:10.1134/ s1021443714050124
  • Mondal A, Basu R, Das S, Nandy P (2011). Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. Journal of Nanoparticle Research 13 (10):4519-4528. doi:10.1007/s11051-011-0406-z
  • Monica RC, Cremonini R (2009). Nanoparticles and higher plants. Caryologia 62 (2): 161-165. doi:10.1080/00087114.2004.1058 9681
  • Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C et al. (2010). Introduction to carbon nanotubes. Springer handbook of nanotechnology 47-118. doi:10.1007/978-3-642-02525-9_3
  • Morla S, Rao CR, Chakrapani R (2011). Factors Affecting Seed Germination and Seedling Growth of Tomato Plants cultured in Vitro Conditions. Journal of Chemical, Biological and Physical Sciences 1 (2): 328-334.
  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP et al. (2016). Carbon nanomaterials in agriculture: a critical review. Frontiers in plant science, 7, 172. doi:10.3389/fpls.2016.00172
  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y et al. (2010). Nanoparticulate material delivery to plants. Plant Science 179 (3): 154-163. doi:10.1016/j.plantsci.2010.04.012
  • Nayyar H, Kaur R, Kaur S, Singh R (2014). γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation 33 (2): 408-419. doi:10.1007/s00344-013-9389-6
  • Nel A, Xia T, Mädler L, Li N (2006). Toxic potential of materials at the nanolevel. Science 311(5761): 622-627. doi:10.1126/ science.1114397
  • Panda L, Dash S (2020). Characterization and utilization of coal fly ash: a review. Emerging Materials Research 9 (3): 921-934. doi:10.1680/jemmr.18.00097
  • Parvaiz A, Satyawati S (2008). Salt stress and phyto-biochemical responses of plants-a review. Plant Soil and Environment 54 (3): 89-99. doi:10.17221/2774-pse
  • Porgali Z (2001). The effect of NaCl type salt stress on the some metabolic events in salt sensitive and salt tolerant tomato plants. MSc, İnönü University, Malatya, Turkey.
  • Porgali ZB, Yurekli F (2005). Salt stress-induced alterations in proline accumulation, relative water content and superoxide dismutase (SOD) activity in salt sensitive Lycopersicon esculentum and salt-tolerant L. pennellii. Acta Botanica Hungarica 47 (1-2): 173-182. doi:10.1556/abot.47.2005.1-2.15
  • Qasim M, Ashraf M, Ashraf MY, Rehman SU, Rha ES (2003). Salt-induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum 46 (4): 629-632. doi:10.1023/a:1024844402000
  • Rani PU, Yasur J, Loke KS, Dutta D (2016). Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta physiologiae plantarum 38 (2): doi:10.1007/ s11738-016-2074-1
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum 35 (4):1039-1050. doi:10.1007/s11738-012-1142-4
  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D et al. (2010). The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biology 10 (1): 20. doi:10.1186/1471-2229-10-20
  • Roychoudhury A, Chakraborty M (2013). Biochemical and molecular basis of varietal difference in plant salt tolerance. Annual Review and Research in Biology 3, 422-454.
  • Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M et al. (2008). Salinity stress affects assimilate metabolism at the geneexpression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). Journal of the Japanese Society for Horticultural Science 77 (1): 61-68. doi:10.2503/jjshs1.77.61
  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS et al. (1995). Salt tolerance of glycinebetaine-deficient andcontaining maize lines. Plant Physiology 107 (2): 631-638. doi:10.1104/pp.107.2.631
  • Shannon MC, Gronwald JW, Tal M (1987). Effects of salinity on growth and accumulation of inorganic ions in cultivated and wild tomato species. Journal of the American Society for Horticultural Science 112 (3): 416–423.
  • Sharon M, Sharon M (2010). Carbon Nano Forms and Applications. New York, NY: McGraw Hill Professional.
  • Shelp BJ, Bown AW, McLean MD (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science 4 (11): 446-452. doi:10.1016/S1360-1385(99)01486-7
  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014). Nano‐ silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry 33 (11): 2429-2437. doi:10.1002/etc.2697
  • Sims JT, Vasilas BL, Ghodrati M (1995). Evaluation of fly ash as a soil amendment for the Atlantic Coastal Plain: II. Soil chemical properties and crop growth. Water, Air, and soil pollution 81 (3-4): 363-372. doi: 10.1007/BF01104021
  • Snapp SS, Shennan C (1992). Effects of salinity on root growth and death dynamics of tomato, Lycopersicon esculentum Mill. New Phytologist 121 (1): 71-79. doi:10.1111/j.1469-8137.1992. tb01094.x
  • Snider JL, Collins GD, Whitaker J, Chapman KD, Horn P (2016). The impact of seed size and chemical composition on seedling vigor, yield, and fiber quality of cotton in five production environments. Field Crops Research 193, 186-195. doi:10.1016/j.fcr.2016.05.002
  • Srinivasan C, Saraswathi R (2010). Nano-agriculture—carbon nanotubes enhance tomato seed germination and plant growth. Current science 99 (3):274–275.
  • Uma S, Prasad TG, Kumar MU (1995). Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet. Annals of Botany 76 (1): 43-49. doi:10.1006/anbo.1995.1076
  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P et al. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 110, 118-127. doi:10.1016/j.plaphy.2016.09.004
  • Vijayakumari K, Puthur JT (2016). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum L. plants subjected to PEG-induced stress. Plant Growth Regulation 78 (1): 57-67. doi:10.1007/s10725-015-0074-6
  • Wallace W, Secor J, Schrader LE (1984). Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiology 75 (1): 170-175. doi:10.1104/pp.75.1.170
  • Wang Y, Gu W, Meng Y, Xie T, Li L et al. (2017). γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Scientific Reports 7 (1):doi:10.1038/srep43609.
  • Wen D, Hou H, Meng A, Meng J, Xie L et al. (2018). Rapid evaluation of seed vigor by the absolute content of protein in seed within the same crop. Scientific Reports 8 (1):doi:10.1038/s41598- 018-23909-y.
  • Xing SG, Jun YB, Hau ZW, Liang LY (2007). Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiology and Biochemistry 45 (8): 560-566. doi:10.1016/j.plaphy.2007.05.007
  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N et al. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224 (3): 700- 709. doi:10.1007/s00425-006-0249-5
  • Yin Y-G, Tominaga T, Iijima Y, Aoki K, Shibata D et al. (2010). Metabolic alterations in organic acids and γ-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits. Plant and Cell Physiology 51 (8): 1300-1314. doi:10.1093/pcp/ pcq090
  • Yurekli F, Porgali ZB, Turkan IS (2004). Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Biologica Cracoviensia Series Botanica, 46:201-212.
  • Zahra S, Amin B, Ali VS, Ali Y, Mehdi Y (2011). The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). Journal of Biophysics and Structural Biology 2 (3): 35-41. doi: 10.5897/JBSB.9000012
  • Zaytseva O, Neumann G (2016). Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture 3 (1). doi:10.1186/s40538-016-0070-8
  • Zhang G, Bown AW (1997). The rapid determination of γ-aminobutyric acid. Phytochemistry 44 (6): 1007-1009. doi:10.1016/s0031-9422(96)00626-7
  • Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011). Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research 10 (4): 1904-1914. doi:10.1021/pr101140n
  • Zheng L, Hong F, Lu S, Liu C (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research 104 (1): 083-091. doi:10.1385/bter:104:1:083