Underlying mechanisms and prospects of heart regeneration

Underlying mechanisms and prospects of heart regeneration

Findings in the last decade suggest that there is a considerable amount of cardiomyocyte turnover in the human heart throughout life, albeit not sufficient for heart regeneration following myocardial infarctions. Only a few species are known to be remarkably efficient in cardiac regeneration. They restore lost cardiomyocytes via a process of cardiomyocyte dedifferentiation, which is followed by robust proliferation of cardiomyocytes and incorporation into the myocardium. Similarly, neonatal mice have been recently shown to regenerate their heart following myocardial injuries. Studies with a neonatal cardiac regeneration mouse model suggest that the major source of new cardiomyocytes is likely to be of cardiomyocyte origin, with the possibility of involvement of cardiac stem cells. To this end, numerous studies have been conducted on the induction of cardiac regeneration to shed light on the underlying mechanisms. This review covers studies on the renewal of cardiomyocytes, the utilization of stem cells in myocardial therapies, and their future applications.

___

  • Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, Schneider MD (1997). Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100: 2722–2728.
  • Bader D, Oberpriller J (1979). Autoradiographic and electron microscopic studies of minced cardiac muscle regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 208: 177–193.
  • Becker CG, Becker T (2008). Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26: 71–80.
  • Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, Huang J, Mirotsou M, Dzau VJ (2013). C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 113: 372–380.
  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776.
  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324: 98–102.
  • Bergmann O, Zdunek S, Frisén J, Bernard S (2012). Cardiomyocyte renewal in humans. Circ Res 324: 98–102.
  • Bergmann O, Zdunek S, Frisén J, Bernard S, Druid H, Jovinge S (2012). Cardiomyocyte renewal in humans. Circ Res 110: e17– e18.
  • Bernstein HS, Srivastava D (2012). Stem cell therapy for cardiac disease. Pediatr Res 71: 491–499.
  • Bersell K, Arab S, Haring B, Kühn B (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138: 257–270.
  • Bicknell Katrina A, Coxon Carmen H, Brooks G (2004). Forced expression of the cyclin B1–CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382: 411– 416.
  • Borchardt T, Braun T (2007). Cardiovascular regeneration in nonmammalian model systems: what are the differences between newts and man? Thromb Haemost 98: 311–318.
  • Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460: 113–117.
  • Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183: 129–141.
  • Canseco DC, Kimura W, Garg S, Mukherjee S, Bhattacharya S, Abdisalaam S, Das S, Asaithamby A, Mammen PP, Sadek HA (2015). Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol 65: 892–900.
  • Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50: 1884–1893.
  • Chablais F, Veit J, Rainer G, Jaźwińska A (2011). The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. Bmc Dev Biol 11: 21.
  • Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, Wolgemuth DJ (2004). Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem 279: 35858–35866.
  • Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94: 92–95.
  • Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007). Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100: 1741–1748.
  • Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A et al. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9: 527–540.
  • D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O et al. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 5: 627–638.
  • Darehzereshki A, Rubin N, Gamba L, Kim J (2014). Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 399: 91–99.
  • Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F (2011). Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 286: 8644–8654.
  • Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13: 215– 222.
  • Engel FB, Hsieh PCH, Lee RT (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. P Natl Acad Sci USA 103: 5546–5551.
  • Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008). Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102: 686–694.
  • Fishman MC, Olson EN (1997). Parsing the heart: genetic modules for organ assembly. Cell 91: 153–156.
  • Flink IL (2002). Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-label. Anat Embryol 205: 235– 244.
  • Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y (2009). Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33: 1184– 1193.
  • Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378: 390–394.
  • Gemberling M, Karra R, Dickson AL, Poss KD (2015). Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4: e05871.
  • González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N (2011). Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138: 1663–1674.
  • Halder G, Johnson RL (2011). Hippo signaling: growth control and beyond. Development 138: 9–22.
  • Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107: 913–922.
  • Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332: 458–461.
  • Hosoda T, D’Amario D, Cabral-Da-Silva MC, Zheng H, Padin- Iruegas ME, Ogorek B, Ferreira-Martins J, Yasuzawa-Amano S, Amano K, Ide-Iwata N et al. (2009). Clonality of mouse and human cardiomyogenesis in vivo. P Natl Acad Sci USA 106: 17169–17174.
  • Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E et al. (2015). Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 16: 84.
  • Ieda M, Fu JDD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375–386.
  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375–386.
  • Jackson T, Allard MF, Sreenan CM (1990). The c-myc protooncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10: 3709–3716.
  • Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA et al. (2009). 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circ Res 119: 1977–2016.
  • Jessup M, Brozena S (2003). Heart failure. N Engl J Med 348: 2007– 2018.
  • Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JCI (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609.
  • Jung J, Kim TG, Lyons GE, Kim HR, Lee Y (2005). Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 280: 30916–30923.
  • Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafé M et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96: 127–137.
  • Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogórek B, Ferreira- Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D’Amario D et al. (2010). Cardiomyogenesis in the adult human heart. Circ Res 107: 305–315.
  • Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407–414.
  • Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464: 601–605.
  • Kubin T, Pöling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lörchner H, Schimanski S et al. (2011). Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9: 420–432.
  • Kühn B, Del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13: 962–969.
  • Kumar A, Brockes JP (2012). Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35: 691–699.
  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25: 1015–1024.
  • Laflamme MA, Murry CE (2011). Heart regeneration. Nature 473: 326–335.
  • Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002). Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90: 634–640.
  • Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, Garratt AN, Birchmeier C, Zhou M, Hartley L et al. (2010). Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res 107: 715–727.
  • Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378: 394–398.
  • Leobon B, Garcin I, Menasche P, Vilquin JTT, Audinat E, Charpak S (2003). Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. P Natl Acad Sci USA 100: 7808–7811.
  • Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127: 607–619.
  • Leri A, Kajstura J, Anversa P (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109: 941–961.
  • Li F, Wang X, Capasso JM, Gerdes AM (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28: 1737–1746.
  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J (1996). Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62: 654–661.
  • Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F et al. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. P Natl Acad Sci USA 102: 8966–8971.
  • Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DY (2010). A dual role for ErbB2 signaling in cardiac trabeculation. Development 137: 3867–3875.
  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008). MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22: 3242–3254.
  • Liu Y, Kitsis RN (1996). Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J Cell Biol 133: 325–334.
  • Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8: 389–398.
  • Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. P Natl Acad Sci USA 105: 2883–2888.
  • Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013). Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497: 249–253.
  • Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, Gannon JB, Cai L, Choi WY, Egnaczyk GF et al. (2015). Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell 34: 387–399.
  • Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2014). Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9: 305–311.
  • Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marbán E (2013). Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5: 191–209.
  • Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T et al. (2004). Adult cardiac Sca- 1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279: 11384–11391.
  • Matsuura K, Wada H, Nagai T, Iijima Y, Minamino T, Sano M, Akazawa H, Molkentin JD, Kasanuki H, Komuro I (2004). Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol 167: 351–363.
  • Menasché P (2003). Skeletal muscle satellite cell transplantation. Cardiovasc Res 58: 351–357.
  • Mercer SE, Odelberg SJ, Simon HGG (2013). A dynamic spatiotemporal extracellular matrix facilitates epicardialmediated vertebrate heart regeneration. Dev Biol 382: 457–469.
  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95: 911–921.
  • Molkentin JD, Lin Q, Duncan SA, Olson EN (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11: 1061–1072.
  • Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SYY, Silberstein LE, Dos Remedios CG, Graham D, Colan S et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. P Natl Acad Sci USA 110:1446–1451.
  • Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98: 2512–2523.
  • Neff AW, Dent AE, Armstrong JB (1996). Heart development and regeneration in urodeles. Int J Dev Biol 40: 719–725.
  • Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120: 408–416.
  • Novoyatleva T, Diehl F, Amerongen MJv, Patra C, Ferrazzi F, Bellazzi R, Engel FB (2010). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85: 681–690.
  • O’Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT (2015). Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 116: 804–815.
  • Oberpriller JO, Oberpriller JC (1974). Response of the adult newt ventricle to injury. J Exp Zool 187: 249–253.
  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. P Natl Acad Sci USA 100: 12313–12318.
  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann NY Acad Sci 938: 221–230.
  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003). Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7-Suppl 3: 86–88.
  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705.
  • Passier R, Mummery C (2010). Getting to the heart of the matter: direct reprogramming to cardiomyocytes. Cell Stem Cell 7: 139–141.
  • Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005). Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96: 110–118.
  • Pelster B, Burggren WW (1996). Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ Res 79: 358–362.
  • Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302.
  • Piatkowski T, Mühlfeld C, Borchardt T, Braun T (2013). Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cells Dev 22: 1921–1931.
  • Poolman RA, Li JM, Durand B, Brooks G (1999). Altered expression of cell cycle proteins and prolonged duration of cardiac myocyte hyperplasia in p27KIP1 knockout mice. Circ Res 85: 117–127.
  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011). Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080.
  • Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. P Natl Acad Sci USA 110: 187–192.
  • Poss KD, Wilson LG, Keating MT (2002). Heart regeneration in zebrafish. Science 298: 2188–2190.
  • Pouly J, Hagège AA, Vilquin JTT, Bissery A, Rouche A, Bruneval P, Duboc D, Desnos M, Fiszman M, Fromes Y et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation 110: 1626–1631.
  • Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 275: 235–244.
  • Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA et al. (2014). The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157: 565–579.
  • Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal- Ginard B, Kajstura J, Leri A, Anversa P (2002). Chimerism of the transplanted heart. N Engl J Med 346: 5–15.
  • Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A et al. (2007). The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell 1: 165– 179.
  • Raya A, Koth CM, Büscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJJ, Rodríguez-Esteban C, Izpisúa-Belmonte JC (2003). Activation of notch signaling pathway precedes heart regeneration in zebrafish. P Natl Acad Sci USA 100 Suppl: 11889–11895.
  • Reinecke H, Poppa V, Murry CE (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34: 241–249.
  • Rochais F, Sturny R, Chao CM (2014). FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res 104: 432–442.
  • Rumyantsev PP (1966). Autoradiographic study on the synthesis of DNA, RNA, and proteins in normal cardiac muscle cells and those changed by experimental injury. Folia Histochem Cytochem 4: 397–424.
  • Rumyantsev PP (1973). Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforsch Mik Ana 139: 431–450.
  • Sander V, Davidson AJ (2014). Kidney injury and regeneration in zebrafish. Sem Nephrol 34: 437–444.
  • Schnabel K, Wu CC, Kurth T, Weidinger G (2011). Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6: e18503.
  • Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493: 433–436.
  • Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TDD, Guerquin-Kern JLL, Lechene CP, Lee RT (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493: 433–436.
  • Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H et al. (2012). Human EScell- derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489: 322–325.
  • Singh BN, Koyano-Nakagawa N, Garry JP, Weaver CV (2010). Heart of newt: a recipe for regeneration. J Cardiovasc Transl Res 3: 397–409.
  • Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115: 896–908.
  • Soonpaa MH, Field LJ (1997). Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272: H220–H226.
  • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271: H2183–H2189.
  • Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ (1997). Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 99: 2644–2654.
  • Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918.
  • Sulima VI (1968). O regeneratsii miokarda reptilii pri razlichnykh povrezhdeniiakh stenki serdtsa. Arkh Anat Gistol Embriol 55: 56–63 (in Russian).
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.
  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE (1998). Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4: 929–933.
  • Tseng AS, Engel FB, Keating MT (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13: 957–963.
  • von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. P Natl Acad Sci USA 109: 2394–2399.
  • Walsh S, Pontén A, Fleischmann BK, Jovinge S (2010). Cardiomyocyte cell cycle control and growth estimation in vivo–an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86: 365–373.
  • Wang J, Panáková D, Kikuchi K, Holdway JE (2011). The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138: 3421–3430.
  • Wills AA, Holdway JE, Major RJ, Poss KD (2008). Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135: 183–192.
  • Witman N, Murtuza B, Davis B, Arner A, Morrison JI (2011). Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354: 67–76.
  • Xiao F, Kimura W, Sadek HA (2015). A hippo “AKT” regulates cardiomyocyte proliferation. Circ Res 116: 3–5.
  • Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011). Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4: ra70.
  • Xin M, Olson EN, Bassel-Duby R (2013). Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Bio 14: 529–541.
  • Yeh ET, Zhang S, Wu HD, Körbling M, Willerson JT, Estrov Z (2003). Transdifferentiation of human peripheral blood CD34+- enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108: 2070–2073.
  • Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115: 1522–1531.
  • Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L (2009). Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120: 1513–1523.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

FAHSAI KANTAWONG, PICHAPORN THAWEENAN, SUTINEE MUNGKALA, SAWINEE TAMANG, RUTHAIRAT MANAPHAN, PHENPHICHAR WANACHANTARARAK, TEERASAK E-KOBON, PRAMOTE CHUMNANPUEN

MELİS OLÇUM UZAN, ÖZNUR BASKAN, ÖZGE KARADAŞ, ENGİN ÖZÇİVİCİ

Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells

Fahriye Duygu ÇETİNKAYA, Sevil KÖSE, Fatima KAYA AERTS, Emir Bakır DENKBAŞ, Petek KORKUSUZ

Osteogenic differentiation of electrostimulated human mesenchymal stem cells seeded on silk-fibroin films

Soner ÇAKMAK, Anıl S. ÇAKMAK, James D. WHİTE, Wassem K. RAJA, David L. KAPLAN, Menemşe GÜMÜŞDERELİOĞLU

The restorative effect of ascorbic acid on liver injury inducedby asymmetric dimethylarginine

Yüksel TERZİ, Hasan ALAÇAM, İbrahim GÖREN, Osman ŞALIŞ, Fatih İLKAYA, Muhammed Emin KELEŞ, Ali OKUYUCU, Abdullah GÜVENLİ, Ömer ALICI

ÖMER AKTÜRK, DİLEK KESKİN

Regeneration and healing of bone and cartilage in type-1 and type-2 diabetes: the effects of insulin

Hilmi DEMİRİN, Mehmet Akif GÜLEÇ, Ömer AKYOL, Sümeyya AKYOL

Emerging roles of ADAMTS metalloproteinases in regenerativemedicine and restorative biology

Ferah ARMUTCU, Kadir DEMİRCAN

A matter of regeneration and repair: caspases as the key molecules

Ayşe KARATUĞ, Şehnaz BOLKENT, Serap BAŞ SANCAR, Selda OKTAYOĞLU GEZGİNCİ, Füsun ÖZTAY

Nurullah AYDOĞDU, Pakize Neslihan TAŞLI, Hatice Burcu ŞİŞLİ, Mehmet Emir YALVAÇ, Fikrettin ŞAHİN