PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line

PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line

Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and theextracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membranelipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins tospecific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate(PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine thespatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. Inthis study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in orderto monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAsassembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulateddifferently during FA assembly and disassembly.

___

  • Balla T (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93 (3): 1019-1137. doi: 10.1152/physrev.00028.2012.
  • Balla T, Varnai P (2009). Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Current Protocols in Cell Biology Chapter 24: Unit 24.24. doi: 10.1002/0471143030. cb2404s42.
  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A et al. (2000). Localized Biphasic Changes in Phosphatidylinositol4,5-Bisphosphate at Sites of Phagocytosis. Journal of Cell Biology 151 (7): 1353-1368. doi: 10.1083/jcb.151.7.1353.
  • Bunney, TD, Katan M (2011). PLC regulation: emerging pictures formolecular mechanisms. Trends in Biochemical Sciences 36 (2): 88-96. doi: 10.1016/j.tibs.2010.08.003.
  • Cailleau R, Young R, Olivé M, Reeves JWJ (1974). Breast tumor cell lines from pleural effusions2. Journal of the National Cancer Institute 53 (3): 661-674. doi: 10.1093/jnci/53.3.661.
  • Carisey A, Ballestrem C (2011). Vinculin, an adapter protein in control of cell adhesion signalling. European Journal of Cell Biology 90 (2-3): 157-163. doi: 10.1016/j.ejcb.2010.06.007.
  • Chinthalapudi K, Rangarajan ES, Patil DN, George EM, Brown DT et al. (2014). Lipid binding promotes oligomerization and focal adhesion activity of vinculin. Journal of Cell Biology 207 (5): 643-656. doi: 10.1083/jcb.201404128.
  • Falkenburger B, Jensen J, Hille B (2010). Kinetics of M(1) muscarinic receptor and G protein signaling to phospholipase C in living cells. The Journal of General Physiology 135 (2): 81-97. doi: 10.1016/s0960-9822(02)00950-8.
  • Fogh BS, Multhaupt HA, Couchman JR (2014). Protein kinase C, focal adhesions and the regulation of cell migration. Journal of Histochemistry Cytochemistry 62 (3): 172-184. doi: 10.1369/0022155413517701.
  • Garvalov BK, Higgins TE, Sutherland JD, Zettl M, Scaplehorn N, et al. (2003). The conformational state of Tes regulates its zyxindependent recruitment to focal adhesions. Journal of Cell Biology 161 (1): 33-39. doi: 10.1083/jcb.200211015.
  • Geiger B, Spatz JP, Bershadsky AD (2009). Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology 10 (1): 21-33. doi: 10.1038/nrm2593.
  • Gericke A, Leslie NR, Lösche M, Ross AH. (2013). PI(4,5)P(2)- mediated cell signaling: emerging principles and PTEN as a paradigm for regulatory mechanism. Advances in Experimental Medicine and Biology 991: 85-104. doi: 10.1007/978-94-007- 6331-9_6.
  • Gilmore AP, Burridge K (1996). Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381 (6582): 531-535. doi: 10.1038/381531a0.
  • Hoffman BD, Grashoff C, Schwartz MA. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature 475 (7356): 316-323. doi: 10.1038/nature10316.
  • Huttenlocher A, Horwitz AR (2011). Integrins in cell migration. Cold Spring Harb Perspect Biology 3 (9): a005074. doi: 10.1101/ cshperspect.a005074.
  • Hynes RO (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110 (6): 673-687.
  • Insall RH, Weiner OD. (2001). PIP3, PIP2, and cell movement— similar messages, different meanings? Developmental Cell 1 (6): 743. doi: 10.1016/s1534-5807(01)00086-7.
  • Izard T, Brown DT (2016). Mechanisms and functions of vinculin interactions with phospholipids at cell adhesion sites. Journal of Biological Chemistry. doi: 10.1074/jbc.R115.686493.
  • Ji C, Zhang Y, Xu P, Xu T, Lou X (2015). Nanoscale landscape of phosphoinositides revealed by specific pleckstrin homology (PH) domains using single-molecule superresolution imaging in the plasma membrane. Journal of Biological Chemistry 290 (45): 26978-26993. doi: 10.1074/jbc.M115.663013.
  • Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW et al. (2010). Nanoscale architecture of integrin-based cell adhesions. Nature 468 (7323): 580-584. doi: 10.1038/ nature09621.
  • Le OT, Cho OY, Tran MH, Kim JA, Chang S et al. (2015). Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase gamma by Akt regulates its interaction with talin and focal adhesion dynamics. Biochimica Biophysica Acta 1853 (10 Pt A): 2432-2443. doi: 10.1016/j.bbamcr.2015.07.001.
  • Legate KR, Takahashi S, Bonakdar N, Fabry B, Boettiger D et al. (2011). Integrin adhesion and force coupling are independently regulated by localized PtdIns(4,5)(2) synthesis. EMBO Journal 30 (22): 4539-4553. doi: 10.1038/emboj.2011.332.
  • Lemmon M (2007). Pleckstrin Homology (PH) domains and phosphoinositides. Biochemical Society symposium 74: 81-93. doi: 10.1042/BSS2007c08.
  • Madugula V, Lu L (2016). A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes. Journal of Cell Science 129 (20): 3922-3934. doi: 10.1242/jcs.194019.
  • Manna D, Albanese A, Park W, Cho, W (2007). Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. Journal of Biological Chemistry 282 (44): 32093-105. doi: 10.1074/jbc.M703517200.
  • Matsuda M, Paterson H, Rodriguez R, Fensome A, Ellis M et al. (2001). Real time fluorescence imaging of plcγ translocation and its interaction with the epidermal growth factor receptor. The Journal of Cell Biology 153 (3): 599-612. doi: 10.1083/ jcb.153.3.599.
  • Morimatsu M, Mekhdjian AH, Chang AC, Tan SJ, Dunn AR (2015). Visualizing the interior architecture of focal adhesions with high-resolution traction maps. Nano Letters 15 (4): 2220-2228. doi: 10.1021/nl5047335.
  • Nader G, Ezratty E, Gundersen G (2016). FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nature Cell Biology 18 (5): 491-503.
  • Nguyen H-N, Yang J-M, Afkari Y, Park BH, Sesaki H et al. (2014). Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America 111 (26): E2684-E2693. doi: 10.1073/pnas.1409433111.
  • Qin J, Xie Y, Wang B, Hoshino M, Wolff DW et al. (2009). Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene 28 (16): 1853- 1863. doi: 10.1038/onc.2009.30.
  • Rubashkin MG, Cassereau L, Bainer R, Dufort CC, Yui Y et al. (2014). Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Research 74 (17): 4597-4611. doi: 10.1158/0008-5472.can-13-3698.
  • Ruth, N (2013). The spatial structure of cell signaling systems. Physical Biology 10 (4): 045004. doi: 10.1088/1478-3975/10/4/045004.
  • Saltel F, Mortier E, Hytonen VP, Jacquier MC, Zimmermann P et al. (2009). New PI(4,5)P2- and membrane proximal integrinbinding motifs in the talin head control beta3-integrin clustering. Journal of Cell Biology 187 (5): 715-731. doi: 10.1083/jcb.200908134.
  • Stauffer T, Ahn S, Meyer T (1998). Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Current Biology Journal 8 (6): 343-6. doi: 10.1016/s0960-9822(98)70135-6.
  • Thapa N, Choi S, Tan X, Wise T, Anderson RA (2015). Phosphatidylinositol phosphate 5-kinase igamma and phosphoinositide 3-kinase/Akt signaling Couple to Promote Oncogenic Growth. Journal of Biological Chemistry 290 (30): 18843-18854. doi: 10.1074/jbc.M114.596742.
  • Várnai P, Balla T (1998). Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonistinduced dynamic changes and relationship to myo-[3h]inositol-labeled phosphoinositide pools. Journal of Cell Biology 143 (2): 501-510. doi: 10.1083/jcb.143.2.501.
  • Varnai P, Rother K, Balla T (1999). Phosphatidylinositol 3-kinasedependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. The Journal of Biological Chemistry 274 (16): 10983-9. doi: 10.1074/jbc.274.16.10983.
  • Wang J, Richards DA (2012). Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biology Open 1 (9): 857-862. doi: 10.1242/bio.20122071.
  • Wang X, Hills L, Huang Y, (2015). Lipid and protein co-regulation of PI3K effectors akt and itk in lymphocytes. Frontiers in Immunology 6: 117. doi: 10.3389/fimmu.2015.00117.
  • Wu Z, Li X, Sunkara M, Spearman H, Morris AJ et al. (2011). PIPKIgamma regulates focal adhesion dynamics and colon cancer cell invasion. PLoS One 6 (9): e24775. doi: 10.1371/ journal.pone.0024775.
  • Yuan Y, Li L, Zhu Y, Qi L, Azizi L et al. (2017). The molecular basis of talin2’s high affinity toward β1-integrin. Scientific Reports 7: 41989. doi: 10.1038/srep41989