The inhibitory effect of melatonin on osteoclastogenesis of RAW 264.7 cells in low concentrations of RANKL and MCSF

The inhibitory effect of melatonin on osteoclastogenesis of RAW 264.7 cells in low concentrations of RANKL and MCSF

RAW 264.7 cells are one of the most recommended cell lines for investigating the activity and differentiation of osteoclasts.These cells differentiate into osteoclasts in the presence of two critical components: receptor activator of nuclear factor kappa B ligand(RANKL) and macrophage colony stimulating factor (MCSF). Melatonin (MEL) hormone has recently become one of the smallmolecules used in the field of bone regeneration and bone disease treatment, as it has the ability to inhibit the differentiation of osteoclastsdirectly by suppression of the NF-κB signaling pathway. The main aim of the current study is to determine sufficient RANKL/MCSFconcentrations for differentiation of the cells to osteoclasts and to describe the repressive effect of MEL on the osteoclastogenesis of thesecells. In this regard, it was found that 10 ng/mL of RANKL- and MCSF-containing medium is suitable for inducing osteoclastogenesis ofthe cells. In addition, melatonin at doses in the range of 100–1000 µM does not have a cytotoxic effect. Subsequently, results of tartrateresistant acid phosphatase (TRAP) activity, TRAP staining, and relative expressions of cathepsin K, nuclear factor of activated T cellsone (NFATC1), and TRAP genes showed a suppressive effect of MEL —especially 800 µM— on RANKL-induced osteoclastogenesis ofthese cells.

___

  • Ai-Aql Z, Alagl A, Graves D, Gerstenfeld L, Einhorn T (2008). Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. Journal of Dental Research 87 (2): 107-118. doi: 10.1177/154405910808700215.
  • Çetin Altındal D, Gümüşderelioğlu M (2019). Dual-functional melatonin releasing device loaded with PLGA microparticles and cyclodextrin inclusion complex for osteosarcoma therapy. Journal of Drug Delivery Science and Technology 52: 586-596. doi: 10.1016/j.jddst.2019.05.027.
  • Detsch R, Rübner M, Strissel P, Mohn D, Strasser E et al. (2016). Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. Nanomedicine 11 (9): 1093-1105. doi: 10.2217/nnm.16.20.
  • Fan X, Biskobing DM, Fan D, Hofstetter W, Rubin J (1997). Macrophage colony stimulating factor down-regulates MCSFreceptor expression and entry of progenitors into the osteoclast lineage. Journal of Bone and Mineral Research 12 (9): 1387- 1395. doi: 10.1359/jbmr.1997.12.9.1387.
  • Germaini MM, Detsch R, Grunewald A, Magnaudeix A, Lalloue F et al. (2017). Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomedical Materials 12 (3): 1-18. doi: 10.1088/1748-605X/aa69c3.
  • Ghayor C, Correro R, Lange K, Karfeld-Sulzer L, Gratz K et al. (2011). Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. Journal of Biological Chemistry 286 (27): 24458-24466. doi: 10.1074/jbc.M111.223297.
  • Hirotani H, Tuohy N, Woo J, Stern P, Clipstone N (2004). The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. Journal of Biological Chemistry 279 (14): 13984-13992. doi: 10.1074/jbc.M213067200.
  • Hodge J, Collier F, Pavlos N, Kirkland M, Nicholson G (2011). M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One 6 (6): e21462-e21470. doi: 10.1371%2Fjournal.pone.0021462.
  • Ichikawa H, Murakami A, Aggarwal B (2006). 1’-Acetoxychavicol acetate inhibits RANKL–induced osteoclastic differentiation of RAW 264.7 monocytic cells by suppressing nuclear factorκB activation. Molecular Cancer Research 4 (4): 275-281. doi: 10.1158/1541-7786.MCR-05-0227.
  • Itoh K, Udagawa N, Katagiri T, Iemura S, Ueno N et al. (2001). Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factorkB ligand. Endocrinology 142 (8): 3656-3662. doi: 10.1210/ endo.142.8.8300.
  • Kaplan A, Akalın Çiftçi G, Kutlu HM (2015). Melatonin induces antiproliferative activity through modulation of apoptotic pathway in H-ras oncogene transformed 5RP7 cells. Turkish Journal of Biology 39: 879-887. doi: 10.3906/biy-1504-86.
  • Kholi SS, Kholi VS (2011). Role of RANKL-RANK/ osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian Journal of Endocrinology and Metabolism 15 (3): 175-181. doi: 10.4103/2230-8210.83401.
  • Kim HJ, Kim HJ, Bae MK, Kim YD (2017). Suppression of osteoclastogenesis by melatonin: a melatonin receptorindependent action. International Journal of Molecular Sciences 18 (6): 1142-1155. doi: 10.3390/ijms18061142.
  • Kim S, Suh D, Yun Y, Lee J, Park K et al. (2012). Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. Journal of Materials Science 23 (11): 2739-2749. doi: 10.1007/ s10856-012-4729-9.
  • Kong L, Smith W, Hao D (2019). Overview of RAW264.7 for osteoclastogensis study: phenotype and stimuli. Journal of Cellular and Molecular Medicine 23 (5): 3077-3087. doi: 10.1111/jcmm.14277.
  • Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002). Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKLmediated osteoclast formation and activation. Journal of Bone and Mineral Research 17 (7): 1219-1229. doi: 10.1359/ jbmr.2002.17.7.1219.
  • Liu J, Huang F, He H (2013). Melatonin effects on hard tissues: bone and tooth. International Journal of Molecular Sciences 14 (5): 10063-10074. doi: 10.3390/ijms140510063.
  • Nguyen J, Nohe A (2017). Factors that affect the osteoclastogenesis of RAW264.7 cells. Journal of Biochemistry and Analytical Studies 2 (1): 1-19. doi: 10.16966/2576-5833.109.
  • Park K-H, Kang JW, Lee E-M, Kim JS, Rhee YH et al. (2011). Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. Journal of Pineal Research 51 (2): 187-194. doi: 194. 10.1111/j.1600-079X.2011.00875.x.
  • Phiphatwatcharaded C, Topark-Ngarm A, Puthongking P, Mahakunakorn P (2014). Anti-inflammatory activities of melatonin derivatives in lipopolysaccharide-stimulated RAW 264.7 cells and antinociceptive effects in mice. Drug Development Research 75 (4): 235-245. doi: 10.1002/ddr.21177.
  • Ping Z, Wang Z, Shi J, Wang L, Guo X et al. (2017). Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclastogenesis via suppression of NF-kB signalling. Acta Biomaterialia 62 (15): 362-371. doi: 10.1016/j. actbio.2017.08.046.
  • Satue M, Ramis J, Arriero M, Monjo M (2015). A new role for 5-methoxytryptophol on bone cells function in vitro. Journal of Cellular Biochemistry 116 (4): 551-558. doi: 10.1002/ jcb.25005.
  • Wang Y, Zhu G, Li N, Song J, Wang L et al. (2015). Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnology Advances 33 (8): 1626-1640. doi: 10.1016/j. biotechadv.2015.08.005.
  • Xu J, Li X, Lian JB, Ayers D, Song J (2009). Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from Flexbone, an elastomeric osteoconductive bone substitute. Journal of Orthopaedic Research 27 (10): 1306-1311. doi: 10.1002/jor.20890.
  • Zhou L, Chen X, Yan J, Li M, Liu T et al. (2017). Melatonin at pharmacological concentrations suppresses osteoclastogenesis via the attenuation of intracellular ROS. Osteoporosis International 28 (12): 3325-3337. doi: 10.1007/s00198-017- 4127-8.