Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress

Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress

Kandelia candel is one of the mangrove species that are most resistant to environmental stress. As a typical nonsalt-secretingmangrove plant, K. candel is an ideal biological material to analyze the molecular mechanism of salt tolerance in woody plants. In thisstudy, changes in protein abundance and expression profile in K. candel roots under high-salinity stress of 600 mmol L–1 NaCl wereanalyzed using isobaric tags for relative and absolute quantification (iTRAQ) assay. Moreover, the physiological parameters associatedwith metabolic pathways in which the differentially abundant proteins (DAPs) are involved were determined. A total of 5577 proteinswere identified by iTRAQ analysis of the K. candel root proteins, of which 227 were DAPs with a fold change ratio >1.2 or a foldchange ratio

___

  • Balestrieri C, Castaldo D, Giovane A, Quagliuolo L, Servillo L (1990). A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). European Journal of Biochemistry 193: 183-187. doi: 10.1271/bbb.60483
  • Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S (2011). Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11: 1965-1975. doi: 10.1002/ pmic.201000564
  • Basyuni M, Baba S, Kinjo Y, Putri LA, Hakim L et al. (2012). Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza. Journal of Plant Physiology 169: 1903-1908. doi: 10.1016/j.jplph.2012.08.005
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
  • Calderwood A, Kopriva S (2014). Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41: 72-78. doi: 10.1016/j.niox.2014.02.005
  • Cheng X, Deng G, Su Y, Liu JJ, Yang Y et al. (2016). Protein mechanisms in response to NaCl-stress of salt-tolerant and salt-sensitive industrial hemp based on iTRAQ technology. Industrial Crops Prod 83: 444-452. doi: 10.1016/j. indcrop.2015.12.086
  • de Costa F, Yendo ACA, Fleck JD, Gosmann G, Fett-Neto AG (2013). Accumulation of a bioactive triterpene saponin fraction of Quillaja brasiliensis leaves is associated with abiotic and biotic stresses. Plant Physiology and Biochemistry 66: 56-62. doi: 10.1016/j.plaphy. 2013.02.003
  • Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930. doi: 10.1016/j. plaphy.2010.08.016
  • Gong B, Zhang C, Li X, Wen D, Wang S et al. (2014). Identification of NaCl and NaHCO3 stress responsive proteins in tomato roots using iTRAQ-based analysis. Biochemical and Biophysical Research Communications 446: 417-422. doi: 10.1016/j. bbrc.2014.03.005
  • Gong W, Xu F, Sun J, Peng Z, He S et al. (2017). iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance. Frontiers in Plant Science 8: 2113. doi: 10.3389/fpls.2017.02113
  • Guo G, Ge P, Ma C, Li X, Lv D et al. (2012). Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. Journal of Proteomics 75: 1867-1885. doi: 10.1016/j.jprot.2011.12.032
  • Guri ASAF (1983). Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Canadian Journal of Plant Science 63: 733-737. doi: 10.4141/cjps83-090
  • Halliwell B, Foyer C (1978). Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9-17. doi: 10.2307/23373245
  • Hyland K, Voisin E, Banoun H, Auclair C (1983). Superoxide dismutase assay using alkaline dimethylsulfoxide as superoxide anion-generating system. Analytical Biochemistry 135: 280-287. doi: 10.1016/0003-2697(83)90684-x
  • Ji FS, Tang L, Li YY, Wang WC, Yang Z et al. (2019). Differential proteomic analysis reveals the mechanism of Musa paradisiaca responding to salt stress. Molecular Biology Reports 46: 1057- 1068. doi: 10.1007/s11033-018-4564-2
  • Ji W, Cong R, Li S, Li R, Qin Z et al. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Frontiers in Plant Science 7: 573. doi: 10.3389/fpls.2016.00573
  • Jiang Q, Li X, Niu F, Sun X, Hu Z et al. (2017). iTRAQ‐based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics 17: 265. doi: 10.1002/pmic.201600265
  • Jin Z, Shen J, Qiao Z, Yang G, Wang R et al. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 414: 481-486. doi: 10.1016/j.bbrc.2011.09.090
  • Kong FJ, Oyanagi A, Komatsu S (2010). Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/ MS-based proteomics approaches. Biochimica et Biophysica Acta -Proteins and Proteomics 1804: 124-136. doi: 0.1016/j. bbapap.2009. 09.023
  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011). Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Journal of Proteomics 74: 1301-1322. doi: 10.1016/j.jprot.2011.02.006
  • Law M, Charles SA, Halliwell B (1983). Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 210: 899-903. doi: 10.1042/bj2100899
  • Li W, Zhao FA, Fang W, Xie D, Hou J et al. (2015). Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Frontiers in Plant Science 6: 732. doi: 10.3389/fpls.2015.00732
  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N et al. (2007). Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiology 143: 1871-1880. doi: 10.2307/40065398
  • Luo M, Zhao Y, Wang Y, Shi Z, Zhang P et al. (2017). Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms. Journal of Proteome Research 17: 141-153. doi: 10.1021/acs. jproteome.7b00455
  • Lü XM, Yang YF, Lu XY, Jin J, Fan XM (2016). Effects of NaCl stress on the AsA-GSH cycle in sour jujube seedlings. Plant Physiology Journal 52: 736-744 (in Chinese with an abstract in English). doi: 10.13592/j.cnki.ppj.2015.0706
  • Micheli F (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science 6: 414-419. doi: 10.1016/S1360- 1385(01)02045-3
  • Miyazaki Y, Hiraide M, Shibuya H (2007). Molecular cloning of functional genes for high growth-temperature and salt tolerance of the basidiomycete Fomitopsis pinicola isolated in a mangrove forest in Micronesia. Bioscience Biotechnology and Biochemistry 71: 273-278. doi: 10.1271/bbb.60483
  • Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22: 867-880. doi: 10.1093/oxfordjournals. pcp.a076232
  • Pang Q, Chen S, Dai S, Chen Y, Wang Y (2010). Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Journal of Proteome Research 9: 2584-2599. doi: 10.1021/pr100034f
  • Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349. doi: 10.1016/j.ecoenv.2004.06.010
  • Patterson BD, MacRae EA, Ferguson IB (1984a). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analytical Biochemistry 139: 487-492. doi: 10.1016/0003- 2697(84)90039-3
  • Patterson BD, Payne LA, Chen YZ, Graham D (1984b). An inhibitor of catalase induced by cold in chilling-sensitive plants. Plant Physiology 76: 1014-1018. doi: 10.2307/4269048
  • Plaxton WC, Podestá FE (2006). The functional organization and control of plant respiration. Critical Reviews in Plant Sciences. 25: 159-198. doi: 10.1080/07352680600563876
  • Sandberg A, Lindell G, Källström BN, Branca RM, Danielsson KG et al. (2012). Tumor proteomics by multivariate analysis on individual pathway data for characterization of vulvar cancer phenotypes. Molecular Cellular Proteomics 11: M112. 016998. doi: 10.1074/mcp.M112.016998
  • Schmedes A, Hølmer G (1989). A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. Journal of the American Oil Chemists Society 66: 813-817. doi: 10.1007/bf02653674
  • Sengupta S, Majumder AL (2009). Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta. 229: 911-929. do: 10.1007/s00425-008-0878-y
  • Shen Q, Yu J, Fu L, Wu L, Dai F et al. (2018a). Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant physiology Biochemistry 123: 319-330. doi: 10.1016/j.plaphy.2017.12.032
  • Shen Z, Chen J, Ghoto K, Hu W, Gao G et al. (2018b). Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiology 38: 1605-1622. doi: 10.1093/treephys/tpy058
  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame, AL et al. (2011). Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. Journal of Proteomics 74: 1045- 1067. doi: 10.1016/j.jprot.2011.03.009
  • Soni P, Nutan KK, Soda N, Nongpiur RC, Roy S et al. (2015). Towards understanding abiotic stress signaling in plants: Convergence of genomic, transcriptomic, proteomic, and metabolomic approaches. In: Pandey GK (editor). Elucidation of Abiotic Stress Signaling in Plants. New York, NY, USA: Springer, pp. 3-40. doi: 10.1007/978-1-4939-2211-6
  • Sun X, Wang Y, Xu L, Li C, Zhang W et al. (2017). Unraveling the root proteome changes and its relationship to molecular mechanism underlying salt stress response in radish (Raphanus sativus L.). Frontiers in Plant Science 8: 1192. doi: 10.3389/ fpls.2017.01192
  • Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010). Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science 15: 462-470. doi: 10.1016/j. tplants.2010.05.006
  • Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002). Over-expression of γ-glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Molecular Breeding 9: 93-101.doi: 10.1023/A:1026718308155
  • Tuteja N (2007). Mechanisms of high salinity tolerance in plants. In: Dieter H, Helmut S (editors). Methods in Enzymology. San Diego, CA, USA: Elsevier, pp. 419-438. doi: 10.1016/S0076- 6879(07)28024-3
  • Unwin RD, Griffiths JR, Whetton AD (2010). Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC–MS/MS. Nature Protocols 5: 1574. doi: 10.1038/nprot.2010.123
  • Wang AG (1990). Quantitative relation between the reaction of hydroxylamine and superoxi-de anion radicals in plants. Plant Physiology Communications 26: 55-57. doi: 10.1021/ ja00874a010
  • Wang J, Yao L, Li B, Meng Y, Ma X et al. (2016a). Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Frontiers in Plant Science 7: 110. doi: 10.3389/fpls.2016.00110
  • Wang L, Liu X, Liang M, Tan F, Liang W et al. (2014). Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One 9: . e83141. doi: 10.1371/journal.pone.0083141
  • Wang L, Pan D, Li J, Tan F, Hoffmann-Benning S et al. (2015). Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. Plant Science 231: 159-172. doi: 10.1016/j. plantsci.2014.11.013
  • Wang L, Pan D, Lv X, Cheng CL, Li J et al. (2016b). A multilevel investigation to discover why Kandelia candel thrives in high salinity. Plant Cell Environment. 39: 2486-2497. doi: 10.1111/ pce.12804
  • Wang XQ, Yang PF, Gao Q, Liu XL, Kuang TY et al. (2008). Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228:167-177. doi: 10.2307/23389955
  • Xiong J, Sun Y, Yang Q, Tian H, Zhang H et al. (2017). Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Science 15: 19. doi: 10.1186/s12953- 017-0127-z
  • Xu J, Lan H, Fang H, Huang X, Zhang H et al. (2015a). Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response. PLoS One 10: e0120978. doi: 10.1371/journal.pone.0120978
  • Xu J, Xing XJ, Tian YS, Peng RH, Xue Y et al. (2015b). Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10: e0136960. doi: 10.1371/journal.pone.0136960
  • Yu J, Chen S, Zhao Q, Wang T, Yang C et al. (2011). Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research 10: 3852-3870. doi: 10.1021/pr101102p
  • Zhu Z, Chen J, Zheng, HL (2012). Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiology 32: 1378- 1388. doi: 10.1093/treephys/tps097