Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens

Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens

The use of quercetin as a bioflavonoid is becoming increasingly common in food industries even though poor water solubility, instability, absorption, and permeability have limited its application. The oil-in-water single-emulsion solvent evaporation method to synthesize highly stable and soluble quercetin-encapsulated nanoparticles (NPs), in which the reaction yield, particle size, and polydispersity of the NPs are varied greatly within the process parameters of the synthesis method, has been optimized. NPs with different initial quercetin amounts were used to determine how the quercetin amount affected nanoparticle properties and antimicrobial efficiency. Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus were chosen as model bacteria due to their being foodborne pathogens. The results of antimicrobial activity evaluated by three different methods showed that the antimicrobial activity of both quercetin NPs and free quercetin was effective on gram-positive strains (L. monocytogenes and S. aureus). Additionally, it was detected that Q31 NPs have more effective antimicrobial activity than other synthesized quercetin nanoparticles depending on the amount of substance and release. Furthermore, on the basis of assessing the antibacterial effects by scanning electron microscopy, it was detected that bacteria cells lost their integrity and became pale with the release of cytoplasm and decomposed after treatment with Q31 NPs.

___

  • Arasoglu T, Derman S, Mansuroglu B (2015). Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology 27: 025103.
  • ASTM International (2013). E2149-13a Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions. West Conshohocken, PA, USA: ASTM International.
  • Bhutada P, Mundhada Y, Bansod K, Bhutada C, Tawari S, Dixit P, Mundhada D (2010). Ameliorative effect of quercetin on memory dysfunction in streptozotocin-induced diabetic rats. Neurobiol Learn Mem 94: 293-302.
  • Boimvaser S, Mariano RN, Turino LN, Vega JR (2016). In vitro bulk/ surface erosion pattern of PLGA implant in physiological conditions: a study based on auxiliary microsphere systems. Polym Bull 73: 209-227.
  • Budhian A, Siegel SJ, Winey KI (2007). Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm 336: 367-375.
  • Budhian A, Siegel SJ, Winey KI (2008). Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int J Pharm 346: 151-159.
  • Chen C, Zhou J, Ji C (2010). Quercetin: a potential drug to reverse multidrug resistance. Life Sci 87: 333-338.
  • Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N (2012). Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2: 112-123.
  • Cockerill FR, Wikler MA, Alder J, Dudley MN, Eliopoulos GM, Ferraro MJ, Hardy DJ, Hecht DW, Hindler JA, Patel JB et al. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 9th ed. Wayne, PA, USA: CLSI.
  • Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004). Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects. Biomacromolecules 5: 463-473.
  • Cushnie TT, Lamb AJ (2005). Antimicrobial activity of flavonoids. Int J Antimicrob Ag 26: 343-356.
  • Darvishi B, Manoochehri S, Kamalinia G, Samadi N, Amini M, Mostafavi SH, Maghazei S, Atyabi F, Dinarvand R (2015). Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran J Pharm Res 14: 373.
  • Derman S (2015). Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J Nanomater 2015: 1-12.
  • Derman S, Mustafaeva Akdeste Z (2015). Particle size and zeta potential investigation of synthetic peptide-protein conjugates. Turk J Biochem 40: 282-289.
  • Derman S, Mustafaeva Akdeste Z, Abamor ES, Bagirova M, Allahverdiyev A (2015). Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 22: 1-11.
  • Dillen K, Bridts C, Van der Veken P, Cos P, Vandervoort J, Augustyns K, Stevens W, Ludwig A (2008). Adhesion of PLGA or Eudragit®/ PLGA nanoparticles to Staphylococcus and Pseudomonas. Int J Pharm 349: 234-240.
  • Duffy CF, Power RF (2001). Antioxidant and antimicrobial properties of some Chinese plant extracts. Int J Antimicrob Ag 17: 527- 529.
  • Espitia PJP, Soares NdFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Tech 5: 1447-1464.
  • Gomes C, Moreira RG, Castell‐Perez E (2011). Poly (DL‐lactide‐ co‐glycolide) (PLGA) nanoparticles with entrapped trans‐ cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76: 16-24.
  • Halayqa M, Domańska U (2014). PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release. Int J Mol Sci 15: 23909-23923.
  • Hans M, Lowman A (2002). Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St M 6: 319-327.
  • Hill LE, Taylor TM, Gomes C (2013). Antimicrobial efficacy of poly (DL‐lactide‐co‐glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. J Food Sci 78: N626-N632.
  • Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y (2010). Characterisation of anti‐Staphylococcus aureus activity of quercetin. Int J Food Sci Tech 45: 1250-1254.
  • Irshad S, Mahmood M, Perveen F (2012). In vitro antibacterial activities of three medicinal plants using agar well diffusion method. Research J Biol 2: 1-8.
  • Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010a). Development of biodegradable nanoparticles for delivery of quercetin. Colloid Surface B 80: 184-192.
  • Kumari A, Yadav SK, Yadav SC (2010b). Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surface B 75: 1-18.
  • Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S (2013). Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int 2013: 1-9.
  • Li H, Chen Q, Zhao J, Urmila K (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5: 11033.
  • Naeem S, Kiew LV, Chung LY, Fui KS, Misran MB (2015). A comparative approach for the preparation and physicochemical characterization of lecithin liposomes using chloroform and non-halogenated solvents. J Surfactants Deterg 18: 579-587.
  • Nathiya S, Durga M, Thiyagarajan D (2014). Quercetin, encapsulated quercetin and its application-a review. Int J Pharm Pharm Sci 10: 20-26.
  • Nikaido H (1996). Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178: 5853.
  • Özbek T, Güllüce M, Şahin F, Özkan H, Sevsay S, Barış Ö (2008). Investigation of the antimutagenic potentials of the methanol extract of Origanum vulgare L. subsp. vulgare in the Eastern Anatolia Region of Turkey. Turk J Biol 32: 271-276.
  • Park YK, Ikegaki M (1998). Preparation of water and ethanolic extracts of propolis and evaluation of the preparations. Biosci Biotech Bioch 62: 2230-2232.
  • Pool H, Quintanar D, de Dios Figueroa J, Mano CM, Bechara JEH, Godínez LA, Mendoza S (2012). Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 2012: 86.
  • Puupponen‐Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman‐Caldentey KM (2001). Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90: 494-507.
  • Quintanar-Guerrero D, Fessi H, Allémann E, Doelker E (1996). Influence of stabilizing agents and preparative variables on the formation of poly (D,L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm 143: 133-141.
  • Ramadan MF, Asker S, Mohamed M (2009). Antimicrobial and antiviral impact of novel quercetin‐enriched lecithin. J Food Biochem 33: 557-571.
  • Rao DA (2008). The design and delivery of a biodegradable poly (lactic-co-glycolic) acid based carrier to the regional lymphatics in rats. PhD, University of Wisconsin, Madison, WI, USA.
  • Rawlinson LAB, O’Gara JP, Jones DS, Brayden DJ (2011). Resistance of Staphylococcus aureus to the cationic antimicrobial agent poly (2-(dimethylamino ethyl) methacrylate) (pDMAEMA) is influenced by cell-surface charge and hydrophobicity. J Med Microbiol 60: 968-976.
  • Rodríguez Vaquero MJ, Aredes Fernández PA, Manca de Nadra MC (2011). Effect of phenolic compound mixtures on the viability of Listeria monocytogenes in meat model. Food Technol Biotech 49: 83-88.
  • Sah E, Sah H (2015). Recent trends in preparation of poly (lactide-coglycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015: 1-22.
  • Silva LM, Hill LE, Figueiredo E, Gomes CL (2014). Delivery of phytochemicals of tropical fruit by-products using poly (DL-lactide-co-glycolide) (PLGA) nanoparticles: synthesis, characterization, and antimicrobial activity. Food Chem 165: 362-370.
  • Sivaranjani R, Maleeka Begum SF, Nithya R, Subburaj MR (2014). Evaluation of antimicrobial and antioxidant potential of quercetin and green tea extract against food borne pathogens. International Journal of Innovative Pharmaceutical Sciences and Research 2: 1729-1740.
  • Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, Cai Z, Li Y, Chen Q (2008a). Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 69: 445-453.
  • Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S (2008b). PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350: 320-329.
  • Stevanovic M, Uskokovic D (2009). Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5: 1-14.
  • Suleiman M, Al-Masri M, Al Ali A, Aref D, Hussein A, Saadeddin I, Warad I (2015). Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J Mater Environ Sci 6: 513- 518.
  • Sun D, Li N, Zhang W, Yang E, Mou Z, Zhao Z, Liu H, Wang W (2016). Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo. J Nanopart Res 18: 1-21.
  • Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013). Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Inter 5: 3867-3874.
  • Vaquero MJR, Alberto MR, de Nadra MCM (2007). Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control 18: 587-593.
  • Vashisth P, Nikhil K, Pemmaraju SC, Pruthi PA, Mallick V, Singh H, Patel A, Mishra NC, Singh RP, Pruthi V (2013). Antibiofilm activity of quercetin-encapsulated nanofibers against Candida albicans. J Bioact Compat Pol 0:1-14.
  • Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC (2015). In vitro assessment of the antimicrobial activity of wound dressings: influence of the test method selected and impact of the pH. J Mater Sci-Mater M 26: 1-13.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Characterization and pathogenicity of Fusarium proliferatum and Fusarium verticillioides, causal agents of Fusarium ear rot of corn

Nur Ain Izzati ZAINUDIN MOHD, Farah Aqila HAMZAH, Nor Azizah KUSAI, Nur Syuhada ZAMBRI, Suhaida SALLEH

Ufuk ÖZER, Karen Wood BARBOUR

Combination of esomeprazole with chemotherapeutics results in more pronounced cytotoxic effect via apoptosis on A549 nonsmall-cell lung cancer cell line

Arzu ORAL YILMAZTEPE, Mehmet SARIMAHMUT, Engin ULUKAYA, Haluk Barbaros ORAL, Güven ÖZKAYA, Şeniz KORKMAZ, Buse CEVATEMRE

KAOUTHER BEN MAHMOUD, EMNA JEDIDI, FABIENNE DELPORTE, YORDAN MUHOVSKI, AHMED JEMMALI, PHILIPPE DRUART

Nur Ain İzzati Mohd ZAINUDIN, Farah Aqila HAMZAH, Nor Azizah KUSAI, Nur Syuhada ZAMBRI, Suhaida SALLEH

Studies on organogenesis during regeneration in the earthworm, Eudrilus eugeniae, in support of symbiotic association with Bacillus endophyticus

Sudhakar SIVASUBRAMANIAM, Elaiya Raja SUBRAMANIAN, * Dinesh Kumar SUDALAIMANI1, Johnson Retnaraj Samuel CHRISTYRAJ SELVAN, Kalidas RAMAMOORTHY, Nino DAISY GOPI, Jackson Durairaj SELVAN CHRISTYRAJ, Kasimani RENGANATHAN, Sundar KRISHNAN

Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens

Serap DERMAN, Deniz UZUNOĞLU, Tayfun ACAR, Tülin ARASOĞLU, Banu MANSUROĞLU, Büşra KOÇYİĞİT, Büşra GÜMÜŞ, Burcu TUNCER

Th1 cells in cancer-associated inflammation

Güneş AKBULUT DİNÇ, Güneş ESENDAĞLI, Didem ÖZKAZANÇ

Na LI, Dandan YIN, Huijie ZHANG, Jinmei XU, Fan WEN, Zheng LIU, Yaozhen CHEN, Ning AN, Jiajia XIN, Yazhou WANG, Wen YIN, Xingbin HU

The Sca1+ mesenchymal stromal subpopulation promotes dendritic cell commitment in the niche

Na LI, Xingbin HU, Jinmei XU, Zheng LIU, Yaozhen CHEN, Dandan YIN, Yazhou WANG, Ning AN, Fan WEN, Jiajia XIN, Hui-Jie ZHANG, Wen YIN