Molecular investigations of the somatic embryogenesis recalcitrance in the cherry (Prunus cerasus L.) rootstock CAB 6P

Molecular investigations of the somatic embryogenesis recalcitrance in the cherry (Prunus cerasus L.) rootstock CAB 6P

Somatic embryogenesis is a powerful tool for clonal propagation and plant breeding in many plant species, but its application is limited by the genotype response based on the interaction between gene expression and culture conditions. In this context, the recalcitrance of the nonembryogenic cherry rootstock Prunus cerasus cultivar CAB 6P was investigated via the analysis of the candidate genes PiABP19, Picdc2, and PiSERK3 in comparison with the embryogenic genotype Prunus incisa cultivar N°131. Semiquantitative RT-PCR was employed to assess the transcript level of these genes in leaf explants and derived calli of the two genotypes cultured on picloram-containing MS medium during 30 days of culture. Results showed that only Picdc2 and PiSERK3 gave differential expression profiles between genotypes N°131 and CAB 6P. Concerning N°131, transcripts levels were low at the beginning of culture and then increased to reach peaks at the 15th (PiSERK3) and at the 25th (Picdc2 and PiSERK3) days of culture. Contrarily, with the CAB 6P cultivar, transcripts levels that were high at the beginning of the culture considerably decreased afterwards. This decrease may explain the recalcitrance of the cultivar CAB 6P to somatic embryogenesis, at least in our experimental conditions.

___

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999). Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108: 161-167.
  • Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lörg H, Dumas C, Rogowsky PM (2001). Molecular characterisation of two novel maize LRR receptor-like kinase, which belong to the SERK gene family. Planta 213: 1-10.
  • Ben Mahmoud K (2012). Etude de l’aptitude à l’embryogenèse somatique du porte-greffe de cerisier CAB 6P (Prunus cerasus L.) et des mécanismes histologiques et moléculaires associés. PhD, National Agronomic Institute of Tunisia, Tunis, Tunisia (in French).
  • Ben Mahmoud K, Delporte F, Muhovski Y, Elloumi N, Jemmali A, Druart P (2013). Expression of PiABP19, Picdc2 and PiSERK3 during induction of somatic embryogenesis in leaflets of Prunus incisa (Thunb.). Mol Biol Rep 40: 1569-1577.
  • Brown SK, Iezzoni AF, Fogle HW (1996). Cherries. In: Janick J, Moore JN, editors. Fruit Breeding: Tree and Tropical Fruits. 1st ed. New York, NY, USA: Wiley and Sons, pp. 213-255.
  • Cantin CM, Pinochet J, Gogorcena Y, Moreno MA (2010). Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Sci Hort 123: 329-335.
  • Castedo M, Perfettini JL, Rommier T, Kroemer G (2002). Cyclindependent kinase: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9: 1287-1293.
  • Chen JG, Shimomura S, Sitbon F, Stanberg G, Jones AM (2001). The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28: 607-617.
  • Cheng Y, Liu H, Cao L, Wang S, Li Y, Zhang Y, Jiang W, Zhou Y, Wang H (2015). Down regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. Front Plant Sci 6: 1-12.
  • David KM, Couch D, Braun N, Brown S, Grosclaude J (2007). The auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50: 197-206.
  • De Oliveira Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Araga FJL (2005). Characterization of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168: 723-729.
  • Del Pozo JC, Manzano C (2014). Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. J Exp Bot 65: 2617-2632.
  • Druart P (1999). Somatic embryogenesis in Prunus species. In: Gupta PK, Newton RJ, Mohain JS, editors. Somatic Embryogenesis in Woody Plants. 1st ed. Dordrecht, the Netherlands: Kluwer Academic, pp. 215-235.
  • Druart P (2003). Micropropagation of apples (Malus sp.). In: Jain SM, Ishii K, editors. Micropropagation. Dordrecht, the Netherlands: Kluwer Academic, pp. 433-463.
  • Dudits D, Bögre L, Györgyey J (1995). Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99: 475-484.
  • Fehér A (2008). The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biol Szeged 52: 53-56.
  • Gomes FLAF, Heredia FF, Silvia PB, Faco O, Campos FAP (2006). Somatic embryogenesis and plant regeneration in Opuntia ficus-indica (L.) Mill. (Cactaceae). Sci Hortic 108: 15-21.
  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61: 1567-1581.
  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127: 803- 816.
  • Hemerly AS, Ferreira P, Engler JA, Montago MV, Engler G, Inzé D (1993). cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711-1723.
  • Isah T (2016). Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38: 1-22.
  • Joubès J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C (2001). A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Phys 126: 1403-1415.
  • Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC (2014). Genome-wide annotation, expression profiling and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. Plant Mol Biol 84: 203-226.
  • Ma J, He Y, Hu Z, Xu W, Xia J, Guo C, Lin S, Chen C, Wu C, Zhang J (2014). Characterization of the third SERK gene in pineapple (Ananas cocomus) and analysis of its expression and autophosphorylation activity in vitro. Genet Mol Biol 37: 530- 539.
  • Malumbres M (2014). Cyclin-dependent kinases. Genome Biol 15: 122-131.
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473-497.
  • Namasivayam P (2007). Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Organ Cult 90: 1-8.
  • Nolan KE, Irwanto RR, Rose RJ (2003). Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Phys 133: 218-230.
  • Ochatt SJ, Atif RM, Patat-Ochatt EM, Jacas L, Conreux C (2010). Competence versus recalcitrance for in vitro regeneration. Not Bot Hort Agro Bot Cluj 38: 102-108.
  • Paque S, Mouille G, Graudont L, Alabadi D, Geartner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA (2014). Auxin Binding Protein links cell wall remodeling, auxin signaling and cell expansion in Arabidopsis. Plant Cell 26: 280-295.
  • Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckeln H, Dudits D, Feher A (2002). The role of auxin, pH, and stress inactivation of embryogenic cell division in leaf protoplast-derived cells in alfalfa. Plant Physiol 129: 1807- 1819.
  • Pérez-Clemente RM, Pérez-Sanjuàn A, Garcia-Férriz L, Beltràn JP, Canas LA (2004). Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breeding 14: 419-427.
  • Pérez-Núñez MT, Souza R, Sáenz L, Chan JL, Zúñiga-Aguilar JJ, Oropeza C (2009). Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28: 11-19.
  • Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R (2016). High expression of SOMATIC EMBRYOGENESIS RECEPTORLIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. Protoplamsa 253: 345-355.
  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, LoyolaVargas VM (2006). Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86: 285-301.
  • Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014). Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 9: e111407.
  • Sanchez-Romero C, Márquez-Martín B, Pliego-Alfaro F (2005). Somatic and zygotic embryogenesis in avocado. In: Mujib A, Samaj J, editors. Plant Cell Monographs. Berlin, Germany: Springer, pp. 271-284.
  • Sauer M, Kleine-Vehn J (2011). Auxin binding protein 1: the outsider. Plant Cell 6: 2033-2043.
  • Savona M, Mattioli R, Nigro S, Falasca G, Rovere D, Costantino P, De Vries S, Ruffoni B, Trovato M, Altamura MM (2012). Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J Exp Bot 63: 471-488.
  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997). A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124: 2049-2062
  • Shi JH, Yang ZB (2001). Is ABP1 an auxin receptor yet? Mol Plant 4: 635-640.
  • Shimada T, Hirabayashi T, Endo T, Fuji H, Kita M, Omura M (2005). Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CiSERK1) from Citrus unshiu Marc. Sci Hort 103: 233-238.
  • Singla B, Khurana JP, Khurana P (2008). Characterization of three somatic embryogenesis receptor kinase genes from wheat Triticum aestivum. Plant Cell Rep 27: 833-843.
  • Sucharitakul K, Rakmit R, Boonsorn Y, Leelapon O, Teerakathiti T, Bunng S, Chanvivattana Y (2014). Isolation and expression analysis of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene in Curcuma alismatifolia Gagnep. J Agr Sci 10: 207-217.
  • Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme A, Liung K, Lee JY, Benfey P, Murray JAH et al. (2009). The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE 4: e6648.
  • Tromas A, Paponov I, Perrot-Rechemmann C (2010). Auxin binding protein 1: functional and evolutionary aspects. Trends Plant Sci 8: 436-446.
  • Vasil IK, Vasil V (1972). Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8: 117-125.
  • Webster AD, Schmidt H (1996). Rootstocks for sweet and sour cherries. In: Webster AD, Looney LE, editors. Cherries: Crop Physiology, Production and Uses. Cambridge, UK: Cambridge University Press, pp. 127-166.
  • Zhang S, Liu X, Lin Y, Xie G, Fu F, Liu H, Wang J, Gao S, Lan H, Rong T (2011). Characterization of a ZmSERK gene and its relationship to somatic embryogenesis in a maize culture. Plant Cell Tiss Org 105: 29-37.
  • Zhang X, Huang L, Zhao Y, Hu C, Guo Q, Chen J (2014). Decrease of auxin binding protein 1 gene expression alters shoot development in Ramie. J Plant Biochem Physiol 2: 125-129.