Cloning, expression, and characterization of human brain acetylcholinesterase in Escherichia coli using a SUMO fusion tag

Cloning, expression, and characterization of human brain acetylcholinesterase in Escherichia coli using a SUMO fusion tag

The molecular structure of acetylcholinesterase (AChE) attracts interest because of its versatility and significant role in the cholinergic system. The main purpose of the present study was to clone a full-length cDNA sequence of human brain acetylcholinesterase (hAChE) into pET SUMO vector and express it successfully. The integrity of the constructed plasmid was confirmed by cross PCR. This recombinant construct was expressed in Escherichia coli BL21 (DE-3). In this work, we produced hexahistidine (6xHis) tagged fusion protein by isopropyl β-D-1-thiogalactopyranoside (IPTG) induction and purified using nickel (Ni2+) affinity chromatography. Using anti-His antibody, we detected ~90 kDa fusion protein. The expression of the hAChE gene in a microbial host resulted in good biological activity. Using the Ellman method, the recombinant AChE exhibited activity with optima at pH 9.0 glycine NaOH buffer and room temperature. Kinetic parameters, KM and Vmax, were determined as 0.63 and 0.69, respectively

___

  • Bernard V, Girard E, Hrabovska A, Camp S, Taylor P, Plaud B, Krejci E (2011). Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Mol Cell Neurosci 46: 272-281.
  • Carter PJ (2011). Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317: 1261-1269.
  • Chan RY, Boudreau-Larivière C, Angus LM, Mankal FA, Jasmin BJ (1999). An intronic enhancer containing an N-box motif is required for synapse-and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. P Natl Acad Sci USA 96: 4627-4632.
  • Chan WK, Chen VP, Luk WK, Choi RC, Tsim KW (2012). N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase. Neurosci Lett 523: 71-75.
  • Chen VP, Choi RC, Chan WK, Leung KW, Guo AJ, Chan GK, Luk WK, Tsim KW (2011a). The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization. J Biol Chem 286: 32948-32961.
  • Chen VP, Luk WK, Chan WK, Leung KW, Guo AJ, Chan GK, Xu SL, Choi RC, Tsim KW (2011b). Molecular assembly and biosynthesis of acetylcholinesterase in brain and muscle: the roles of t-peptide, FHB domain, and N-linked glycosylation. Front Mol Neurosci 4: 36.
  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11: 315-335.
  • Correa A, Oppezzo P (2011). Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high‐throughput screening. Biotechnology Journal 6: 715- 730.
  • Costa S, Almeida A, Castro A, Domingues L (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in Microbiology 5: 63.
  • Demain AL, Vaishnav P (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27: 297- 306.
  • Dolinska MB, Kovaleva E, Backlund P, Wingfield PT, Brooks BP, Sergeev YV (2014). Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PloS one 9: e84494.
  • Du DM, Carlier PR (2004). Development of bivalent acetylcholinesterase inhibitors as potential therapeutic drugs for Alzheimer’s disease. Curr Pharm Design 10: 3141-3156.
  • Eilebrecht S, Smet-Nocca C, Wieruszeski JM, Benecke A (2010). SUMO-1 possesses DNA binding activity. BMC Res Notes 3: 146.
  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95.
  • Esposito D, Chatterjee DK (2006). Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17: 353-358.
  • Fischer M, Ittah A, Liefer I, Gorecki M (1993). Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol 13: 25-38.
  • Freydank AC, Brandt W, Drager B (2008). Protein structure modeling indicates hexahistidine-tag interference with enzyme activity. Proteins 72: 173-183.
  • Guergova-Kuras M, Salcedo-Hernandez R, Bechmann G, Kuras R, Gennis RB, Crofts AR (1999). Expression and one-step purification of a fully active polyhistidine-tagged cytochrome bc1 complex from Rhodobacter sphaeroides. Protein Expr Purif 15: 370-380.
  • Hayashi K, Kojima C (2010). Efficient protein production method for NMR using soluble protein tags with cold shock expression vector. J Biomol NMR 48: 147-155.
  • Helenius A, Aebi M (2001). Intracellular functions of N-linked glycans. Science 291: 2364-2369.
  • Houdebine LM (2000). Transgenic animal bioreactors. Transgenic Res 9: 305-320.
  • Inkson CA, Brabbs AC, Grewal TS, Skerry TM, Genever PG (2004). Characterization of acetylcholinesterase expression and secretion during osteoblast differentiation. Bone 35: 819-827.
  • Job V, Molla G, Pilone MS, Pollegioni L (2002). Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur J Biochem 269: 1456-1463.
  • Johnson ES (2004). Protein modification by SUMO. Annu Rev Biochem 73: 355-382.
  • Kamionka M (2011). Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechno 12: 268-274.
  • Kawai R, Yoshida M, Tani T, Igarashi K, Ohira T, Nagasawa H, Samejima M (2003). Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotrophic yeast Pichia pastoris. Bioscience, Biotechnology, and Biochemistry 67: 1-7.
  • Layer PG, Willbold E (1995). Novel functions of cholinesterases in development, physiology and disease. Prog Histochem Cytochem 29: 1-94.
  • Lee S, Kim JH, Lee S (2012). Internal diffusion-controlled enzyme reaction: the acetylcholinesterase kinetics. J Chem Theory Comput 8: 715-723.
  • Li Y, Camp S, Rachinsky TL, Bongiorno C, Taylor P (1993). Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J Biol Chem 268: 3563-3572.
  • Ma JK, Drake PM, Christou P (2003). The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4: 794-805.
  • Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W (2014). Double trouble—Buffer selection and His‐tag presence may be responsible for nonreproducibility of biomedical experiments. Protein Science 23: 1359-1368.
  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5: 75-86.
  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15: 182-189.
  • Panavas T, Sanders C, Butt TR (2009). SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497: 303-317.
  • Panek A, Pietrow O, Filipkowski P, Synowiecki J (2013). Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochim Pol 60: 163-166.
  • Patocka J, Kuca K, Jun D (2004). Acetylcholinesterase and butyrylcholinesterase—important enzymes of human body. Acta Medica (Hradec Kralove) 47: 215-228.
  • Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H (2006). Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 107: 3397-3406.
  • Sanden AM, Prytz I, Tubulekas I, Forberg C, Le H, Hektor A, Neubauer P, Pragai Z, Harwood C, Ward A et al (2003). Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol Bioeng 81: 158-166.
  • Schmidt FR (2004). Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65: 363- 372.
  • Seeler JS, Dejean A (2003). Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4: 690-699.
  • Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, Soreq H (2009). MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31: 965-973.
  • Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D, Korner M, Ebstein RP, Soreq H (2000). A transcriptionactivating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9: 1273-1281.
  • Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, Ahmed M, Miller EJ, Chavan SS, Golanov E (2014). Brain region–specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med 20: 601.
  • Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013). Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70: 165-188.
  • Small DH, Michaelson S, Sberna G (1996). Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer’s disease. Neurochem Int 28: 453-483.
  • Solá RJ, Griebenow K (2009). Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98: 1223-1245.
  • Sørensen HP (2010). Towards universal systems for recombinant gene expression. Microb Cell Fact 9: 27.
  • Soreq H, Ben-Aziz R, Prody CA, Seidman S, Gnatt A, Neville L, Lieman-Hurwitz J, Lev-Lehman E, Ginzberg D, LipidotLifson Y et al (1990). Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci USA 87: 9688-9692.
  • Soreq H, Seidman S (2001). Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci 2: 294-302.
  • Swartz JR (2001). Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12: 195-201.
  • Terpe K (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60: 523-533.
  • Terpe K (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72: 211-222.
  • Thiermann H, Kehe K, Steinritz D, Mikler J, Hill I, Zilker T, Eyer P, Worek F (2007). Red blood cell acetylcholinesterase and plasma butyrylcholinesterase status: important indicators for the treatment of patients poisoned by organophosphorus compounds. Arh Hig Rada Toksikol 58: 359-366.
  • Tripathi A, Srivastava U (2008). Acetylcholinesterase: a versatile enzyme of nervous system. Annals of Neurosciences 15: 106- 111.
  • Velan B, Kronman C, Ordentlich A, Flashner Y, Leitner M, Cohen S, Shafferman A (1993). N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J 296 (Pt 3): 649-656.
  • Wang Y, Ladunga I, Miller AR, Horken KM, Plucinak T, Weeks DP, Bailey CP (2008). The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii. Genetics 179: 177-192.
  • Wang Z, Li H, Guan W, Ling H, Wang Z, Mu T, Shuler FD, Fang X (2010). Human SUMO fusion systems enhance protein expression and solubility. Protein Expr Purif 73: 203-208.
  • Zhou Y, Zhou Y, Li J, Chen J, Yao Y, Yu L, Peng D, Wang M, Su D, He Y et al (2015). Efficient expression, purification and characterization of native human cystatin C in Escherichia coli periplasm. Protein Expr Purif 111: 18-22.
  • Zimmerman G, Soreq H (2006). Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res 326: 655-669.
  • Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005). Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6: 103-111.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ergun KAYA, Fernanda SOUZA, Emel Yilmaz GÖKDOĞAN, Muammer CEYLAN, Maria JENDEREK

Nur Ain İzzati Mohd ZAINUDIN, Farah Aqila HAMZAH, Nor Azizah KUSAI, Nur Syuhada ZAMBRI, Suhaida SALLEH

Expansion of human umbilical cord blood hematopoietic progenitors with cord vein pericytes

Betül SALTIK ÇELEBİ, Beyza YAĞCI GÖKÇINAR

Assessment of the function and expression pattern of auxin response factor B3 in the model legume plant Medicago truncatula

Valya VASSILEVA, Miglena REVALSKA, Grigor ZEHIROV, Sofie GOORMACHTIG, Anelia IANTCHEVA

Alteration in the subcellular location of the inhibitor of growth protein p33(ING1b) in estrogen receptor alpha positive breast carcinoma cells

Hani ALOTAİBİ, Esra BAĞRIYANIK ERDAL, Emine KANDEMİŞ, İmge KUNTER, Tülay CANDA

ALEKSANDRA BOCIAN, KONRAD HUS, MARCIN JAROMIN, Miroslaw TYRKA, Andrzej LYSKOWSKI

Characterization and pathogenicity of Fusarium proliferatum and Fusarium verticillioides, causal agents of Fusarium ear rot of corn

Nur Ain Izzati ZAINUDIN MOHD, Farah Aqila HAMZAH, Nor Azizah KUSAI, Nur Syuhada ZAMBRI, Suhaida SALLEH

Arzu Yilmaztepe ORAL, Haluk Barbaros ORAL, Mehmet SARIMAHMUT, Buse CEVATEMRE, Güven ÖZKAYA, Şeniz KORKMAZ, Engin ULUKAYA

Nazli AYHAN, Pinar GÜLER, Banu Şebnem ÖNDER

Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens

Serap DERMAN, Deniz UZUNOĞLU, Tayfun ACAR, Tülin ARASOĞLU, Banu MANSUROĞLU, Büşra KOÇYİĞİT, Büşra GÜMÜŞ, Burcu TUNCER