Melatonin as a stabilizer of mitochondrial function: role in diseases and aging

It is now almost 60 years since the discovery of melatonin and new physiological functions of the indole continuously appear in the most recent studies worldwide. Experimental evidence emphasizes its importance as a stabilizer of the mitochondrial bioenergetics, which could be related to the prevention of development of aging and several diseases. In the next years, conscientious investigation about this topic should be undertaken by scientists of different research areas to achieve a better understanding of the molecular mechanisms implied. This will ultimately allow the development and clinical application of efficacious treatments.

Melatonin as a stabilizer of mitochondrial function: role in diseases and aging

It is now almost 60 years since the discovery of melatonin and new physiological functions of the indole continuously appear in the most recent studies worldwide. Experimental evidence emphasizes its importance as a stabilizer of the mitochondrial bioenergetics, which could be related to the prevention of development of aging and several diseases. In the next years, conscientious investigation about this topic should be undertaken by scientists of different research areas to achieve a better understanding of the molecular mechanisms implied. This will ultimately allow the development and clinical application of efficacious treatments.

___

  • Acuña-Castroviejo D, Carretero M, Doerrier C, López LC, García- Corzo L, Tresguerres JA, Escames G (2012). Melatonin protects lung mitochondria from aging. Age (Dordr) 34: 681–692.
  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004). Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for antiapoptotic effects of melatonin. FASEB J 18: 869–871.
  • Argun M, Tök L, Uğuz AC, Çelik Ö, Tök ÖY, Naziroğlu M (2014). Melatonin  and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 nm). Eye (Lond) 28: 752–760.
  • Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2011a). Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108: 14–20.
  • Bejarano I, Espino J, Marchena AM, Barriga C, Paredes SD, Rodríguez AB, Pariente JA (2011b). Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 353: 167–176.
  • Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2009). Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46: 392–400.
  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.
  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287: C817–833.
  • Carrasco C, Holguín-Arévalo MS, Martín-Partido G, Rodríguez AB, Pariente JA (2014a). Chemopreventive effects of resveratrol in a rat model of cerulein-induced acute pancreatitis. Mol Cell Biochem 387: 217–225.
  • Carrasco C, Marchena AM, Holguín-Arévalo MS, Martín-Partido G, Rodríguez AB, Paredes SD, Pariente JA (2013). Anti- inflammatory effects of melatonin in a rat model of caerulein- induced acute pancreatitis. Cell Biochem Funct 31: 585–590.
  • Carrasco C, Rodriguez AB, Pariente JA (2014b). Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreat Dis Int 13: 442–446.
  • Chen Y, Cairns R, Papandreou I, Koong A, Denko NC (2009). Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One 4: e7033.
  • Dabbeni-Sala F,  Di Santo S,  Franceschini D,  Skaper SD,  Giusti P (2001). Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 15: 164–170.
  • del Castillo-Vaquero A, Salido GM, Gonzalez A (2010). Melatonin induces calcium release from CCK-8- and thapsigargin- sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 49: 256–263.
  • Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC (2010). The role of mitochondria in brain aging and the effects of melatonin. Curr Neropharmacol 8: 182–193.
  • Espino J,  Bejarano I,  Paredes SD,  Barriga C,  Reiter RJ,  Pariente JA,  Rodríguez AB (2011). Melatonin is able to delay endoplasmic reticulum stress-induced apoptosis in leukocytes from elderly humans. Age 33: 497–507.
  • Espino J,  Bejarano I,  Redondo PC,  Rosado JA,  Barriga C,  Reiter RJ,  Pariente JA,  Rodríguez AB (2010). Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233: 105–118.
  • Espino J, Pariente JA, Rodríguez AB (2012). Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012: 670294.
  • Freitas I,  Bertone V,  Guarnaschelli C,  Ferrigno A,  Boncompagni E,  Rizzo V,  Reiter RJ,  Barni S,  Vairetti M (2006). In situ demonstration of improvement of liver mitochondria function by melatonin after cold ischemia. In Vivo 20: 229–237.
  • Han YX,  Zhang SH,  Wang XM,  Wu JB (2006). Inhibition of mitochondria responsible for the anti-apoptotic effects of melatonin during ischemia-reperfusion. J Zhejiang Univ Sci B 7: 142–147.
  • Hardeland R (2008). Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 65: 2001–2018.
  • Hardeland R, Pandi-Perumal SR (2005). Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2: 22.
  • Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300.
  • Huang WY, Jou MJ, Peng TI (2013). mtDNA T8993G mutation- induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. PLoS One 8: e81546.
  • Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, Wu HY, Chen CC, Hsu LF (2007). Melatonin protects against common deletion of mitochondrial DNA augmented oxidative stress and apoptosis. J Pineal Res 43: 389–403.
  • Kleszczyński K, Hardkop LH, Fischer TW (2011). Differential effects of melatonin as a broad range UV-damage preventive dermato- endocrine regulator. Dermatoendocrinol 3: 27–31.
  • Lowes DA,  Almawash AM,  Webster NR,  Reid VL,  Galley HF (2011). Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anaesth 107: 193–201.
  • Lowes DA, Webster NR, Murphy MP, Galley HF (2013). Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110: 472–480.
  • Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F (2010). Melatonin signaling and cell protection function. FASEB J 24: 3603–3624.
  • Mansouri A,  Demeilliers C,  Amsellem S,  Pessayre D,  Fromenty B (2001). Acute ethanol administration oxidatively damages and depletes mitochondrial DNA in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther 298: 737–743.
  • Martin M, Macias M, Escames G, Leon J, Acuña-Castroviejo D (2000a). Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butylhydroperoxide induced mitochondrial oxidative stress. FASEB J 14: 1677–1679.
  • Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D (2000b). Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vitro. J Pineal Res 28: 242–248.
  • Mather M, Rottenberg H (2000). Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Bioph Res Co 273: 603–608.
  • Morley JE, Armbrecht HJ, Farr SA, Kumar VB (2012). The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochem Biophys Acta 1822: 650–656.
  • Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010). Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48: 297–310.
  • Patki G, Lau YS (2011). Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease. Pharmacol Biochem Behav 99: 704–711.
  • Petrosillo G,  Colantuono G,  Moro N,  Ruggiero FM,  Tiravanti E,  Di Venosa N,  Fiore T,  Paradies G (2009). Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability  transition pore opening. Am J Physiol Heart Circ Physiol 297: H1487–1493.
  • Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G, Ruggiero FM (2006). Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia-reperfusion: role of cardiolipin. FASEB J 2: 269–276.
  • Petrosillo G, Fattoretti P, Matera M, Ruggiero FM,  Bertoni- Freddari C,  Paradies G (2008). Melatonin prevents age- related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 5: 935–943.
  • Phillipson OT (2014). Management of the aging risk factor for Parkinson’s disease. Neurobiol Aging 35: 847–857.
  • Reiter RJ, Paredes SD, Korkmaz A, Jou MJ, Tan DX (2008). Melatonin combats molecular terrorism at the mitochondrial level. Interdiscip Toxicol 1: 137–149.
  • Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003). Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50: 1129–1146.
  • Rodriguez MI, Escames G, López LC, García JA, Ortiz F, López A, Acuña-Castroviejo D (2007). Melatonin administration prevents cardiac and diaphragmatic mitochondrial oxidative damage in senescence-accelerated mice. J Endocrinol 194: 637–643.
  • Santofimia-Castaño P, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A (2014). Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol Cell Biochem 397: 75–86.
  • Sarti P,  Magnifico MC,  Altieri F,  Mastronicola D,  Arese M (2013). New evidence for cross talk between melatonin and mitochondria mediated by a circadian-compatible interaction with nitric oxide. Int J Mol Sci 14: 11259–11276.
  • Schoop VM, Mirancea N, Fusenig NE (1999). Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 112: 343–353.
  • Sheu SS, Nauduri D, Ander MW (2006). Targeting antioxidants to mitochondria: a new therapeutic direction. Biochem Biophys Acta 1762: 256–265.
  • Siren PM, Siren MJ (2011). Critical diaphragm failure in sudden infant death syndrome. Ups J Med Sci 116: 115–123.
  • Skulachev VP (2009). New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry (Mosc) 74: 1400–1403.
  • Smith RA, Porteous CM, Coulter CV, Murphy MP (1999). Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263: 709–716.
  • Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP (2011). Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011: 326320.
  • Stacchiotti A,  Favero G,  Giugno L,  Lavazza A,  Reiter RJ,  Rodella LF, Rezzani R (2014). Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One 9: e111141.
  • Stetinová V,  Smetanová L,  Grossmann V,  Anzenbacher P (2002). In vitro and in vivo assessment of the antioxidant activity of melatonin and related indole derivatives. Gen Physiol Biophys 21: 153–162.
  • Swerdlow RH, Khan SM (2004). A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63: 8–20.
  • Tan DX, Manchester LC, Sainz RM, Mayo JC, Leon J, Hardeland R, Poeggeler B, Reiter RJ (2005). Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and cell-free systems by melatonin. J Pineal Res 39: 185–194.
  • Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ, Xu X, Reiter RJ (2014). Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 15: 15858–15890.
  • Uguz AC,  Cig B,  Espino J,  Bejarano I,  Naziroglu M,  Rodríguez AB, Pariente JA (2012). Melatonin potentiates chemotherapy- induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53: 91–98.
  • Wang BQ,  Yang QH,  Xu RK,  Xu JN (2013). Elevated levels of mitochondrial respiratory complexes activities and ATP production in 17-β-estradiol-induced prolactin-secretory tumor cells in male rats are inhibited by melatonin in vitro and in vitro. Chin Med J (Engl) 126: 4724–4730.
  • Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM (2009). Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40: 1877–1885.
  • Wang X,  Sirianni A,  Pei Z,  Cormier K,  Smith K,  Jiang J,  Zhou S, Wang H, Zhao R, Yano H et al. (2011). The melatonin-MT1 receptor axis modulates mutant huntingtin mediated toxicity. J Neurosci 31: 14496–14507.
  • Xu M, Ashraf M (2002). Melatonin protection against lethal myocyte injury induced by doxorubicin as reflected by effects on mitochondrial membrane potential. J Mol Cell Cardiol  34: 75–79.
  • Zavodnik IB,  Lapshina EA,  Cheshchevik VT,  Dremza IK,  Kujawa J, Zabrodskaya SV, Reiter RJ (2011). Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes. J Physiol Pharmacol 62: 421–427.
  • Zhang Y, Cook A, Kim J, Baranov SV, Jiang J, Smith K, Cormier K, Bennett E, Browser RP, Day AL et al. (2013). Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55: 26–35.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Amelioration of subchronic acrylamide toxicity in large intestine of rats byorganic dried apricot intake

Mehmet Erman ERDEMLİ, Zümrüt DOĞAN, Yilmaz ÇİĞREMİŞ, Müslüm AKGÖZ, Eyüp ALTINÖZ, Murat GEÇER, Yusuf TÜRKÖZ

Melatonin, mitochondria, and Ca2+ homeostasis in the exocrine pancreas: an overview

Antonio GONZALEZ, Patricia SANTOFIMIA-CASTAÃ'O, Gines Maria SALIDO

The effects of topical melatonin on oxidative stress, apoptosis signals,and p53 protein expression during cutaneous wound healing

Azize ŞENER, Özge ÇEVİK, Özge DOĞAN, Nazli Gül ALTINDİŞ, Halil AKSOY, Betül OKUYAN

Expression profiles of genes related to melatonin and oxidative stress in human renal proximal tubule cells treated with antibiotic amphotericin B and its modified forms

Joanna GOLA, Aleksandra SKUBIS, Bartosz SIKORA, Celina KRUSZNIEWSKA-RAJS, Jolanta ADAMSKA, Urszula MAZUREK, Barbara STRZALKA-MROZIK, Grzegorz CZERNEL, Mariusz GAGOS

Melatonin is a potent modulator of antioxidative defense and cellular proliferation against aluminum toxicity in rats

Nihal Ömür BULAN, Guner SARIKAYA-UNAL, Sevim TUNALI, Pelin Arda PİRİNÇÇİ, Refiye YANARDAG

Mitochondrial DNA-related disorders: emphasis on mechanisms and heterogeneity

Umut CAGIN, Jose Antonio ENRIQUEZ

Role of melatonin on calcium signaling and mitochondrial oxidativestress in epilepsy: focus on TRP channels

Mustafa NAZIROĞLU

Editorial 'Melatonin and Mitochondria Interact in Diseases'

Jose Antonio Pariente LLANOS, Mustafa NAZİROĞLU

Melatonin induces antiproliferative activity through modulation of apoptoticpathway in H-ras oncogene transformed 5RP7 cells

Ayşe KAPLAN, Gülşen Akalin ÇİFTÇİ, Hatice Mehtap KUTLU

Prooxidant effects of melatonin: a brief review

Malwina S MUNIK, Cem EKMEKÇİOĞLU