Melatonin, mitochondria, and Ca2+ homeostasis in the exocrine pancreas: an overview

Melatonin, a derivative of the amino acid tryptophan, was initially thought to be mainly produced and secreted by the pineal gland; with time, it was also found in other tissues and organs, and even in plants. Since its discovery, the study of the role of the indole in cellular homeostasis has generated impressive data, which have led researchers to a common idea regarding the positive actions of melatonin in health. The uncontrolled production of free radicals in cellular systems leads to the situation termed oxidative stress, which has been signaled as the basis of disease and aging. In the exocrine pancreas, as in other parts of the body, a daily confrontation takes place against oxidative stress. The major signaling mechanisms controlling the physiology of the gland are affected under this situation. Because a love-hate relationship involving mitochondria and oxidative stress has been considered the basis of disease, any physiological regulator that sets hands on the system as a pacemaker will be determinant for the health's fate. Here we present an overview of the recent findings regarding the protective role of melatonin on the function of the exocrine pancreas, paying attention to the role of Ca2+ signaling and the involvement of mitochondria.

Melatonin, mitochondria, and Ca2+ homeostasis in the exocrine pancreas: an overview

Melatonin, a derivative of the amino acid tryptophan, was initially thought to be mainly produced and secreted by the pineal gland; with time, it was also found in other tissues and organs, and even in plants. Since its discovery, the study of the role of the indole in cellular homeostasis has generated impressive data, which have led researchers to a common idea regarding the positive actions of melatonin in health. The uncontrolled production of free radicals in cellular systems leads to the situation termed oxidative stress, which has been signaled as the basis of disease and aging. In the exocrine pancreas, as in other parts of the body, a daily confrontation takes place against oxidative stress. The major signaling mechanisms controlling the physiology of the gland are affected under this situation. Because a love-hate relationship involving mitochondria and oxidative stress has been considered the basis of disease, any physiological regulator that sets hands on the system as a pacemaker will be determinant for the health's fate. Here we present an overview of the recent findings regarding the protective role of melatonin on the function of the exocrine pancreas, paying attention to the role of Ca2+ signaling and the involvement of mitochondria.

___

  • Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014). Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71: 2997–3025.
  • Armstrong JA, Cash N, Soares PM, Souza MH, Sutton R, Criddle DN (2013). Oxidative stress in acute pancreatitis: lost in translation? Free Radic Res 47: 917–933.
  • Aust S, Brucker B, Graf J, Klimpfinger M, Thalhammer T (2006). Melatonin modulates acid/base transport in human pancreatic carcinoma cells. Cell Physiol Biochem 18: 91–102.
  • Baggaley EM, Elliott AC, Bruce JI (2008). Oxidant-induced inhibition of the plasma membrane Ca2+-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol 295: C1247–1260.
  • Barlas A, Cevik H, Arbak S, Bangir D, Sener G, Yeğen C, Yeğen BC (2004). Melatonin protects against pancreaticobiliary inflammation and associated remote organ injury in rats: role of neutrophils. J Pineal Res 37: 267–275.
  • Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009). Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284: 20796–20803.
  • Booth DM, Murphy JA, Mukherjee R, Awais M, Neoptolemos JP, Gerasimenko OV, Tepikin AV, Petersen OH, Sutton R, Criddle DN (2011). Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 140: 2116–2125.
  • Bruce JI, Elliott AC (2007). Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol 293: C938– 950.
  • Bubenik GA, Pang SF (1997). Melatonin levels in the gastrointestinal tissues of fish, amphibians, and a reptile. Gen Comp Endocrinol 106: 415–419.
  • Bubenik GA, Pang SF, Hacker RR, Smith PS (1996). Melatonin concentrations in serum and tissues of porcine gastrointestinal tract and their relationship to the intake and passage of food. J Pineal Res 21: 251–256.
  • Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2008). Age-related alterations in Ca2+ signals and mitochondrial membrane potential in exocrine cells are prevented by melatonin. J Pineal Res 45: 191–198.
  • Campo ML (2009). Apoptosis. In: Salido GM, Rosado JA, editors. Apoptosis: Involvement of Oxidative Stress and Intracellular Ca2+ Homeostasis. Dordrecht, the Netherlands: Springer, pp. 17–55.
  • Carafoli E (1991). Calcium pump of the plasma membrane. Physiol Rev 71: 129–153.
  • Carrasco C, Rodriguez AB, Pariente JA (2014). Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreat Dis Int 13: 442–446.
  • Chandra R, Liddle RA (2012). Neurohormonal regulation of pancreatic secretion. Curr Opin Gastroenterol 28: 483–487.
  • Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G (2014). Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res 56: 12–19.
  • Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP (2012). Mitochondrial redox signalling at a glance. J Cell Sci 125: 801–806.
  • Cui P, Yu M, Peng X, Dong L, Yang Z (2012). Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression. J Pineal Res 52: 236–243.
  • Del Castillo-Vaquero A, Salido GM, Gonzalez A (2010). Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int J Exp Pathol 91: 114–124.
  • Denton RM, McCormack JG (1980). On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 119: 1–8.
  • Eghbal MA, Taziki S, Sattari MR (2014). Mechanisms of phenytoininduced toxicity in freshly isolated rat hepatocytes and the protective effects of taurine and/or melatonin. J Biochem Mol Toxicol 28: 111–118.
  • Fernandez-Sanchez M, del Castillo-Vaquero A, Salido GM, Gonzalez A (2009). Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biol 10: 77.
  • Galloway CA, Lee H, Yoon Y (2012). Mitochondrial morphologyemerging role in bioenergetics. Free Radic Biol Med 53: 2218– 2228.
  • Gerasimenko JV, Gerasimenko OV, Petersen OH (2014). The role of Ca2+ in the pathophysiology of pancreatitis. J Physiol 592: 269–280.
  • Gerasimenko OV, Gerasimenko JV (2012). Mitochondrial function and malfunction in the pathophysiology of pancreatitis. Pflugers Arch 464: 89–99.
  • Gerloff A, Singer MV, Feick P (2010). Beer and its non-alcoholic compounds: role in pancreatic exocrine secretion, alcoholic pancreatitis and pancreatic carcinoma. Int J Environ Res Public Health 7: 1093–1104.
  • Gomez-Pinilla PJ, Camello PJ, Pozo MJ (2009). Pancreatic calcium signaling: role in health and disease. Pancreatology 9: 329–333.
  • Gong J, Robbins LA, Lugea A, Waldron RT, Jeon CY, Pandol SJ (2014). Diabetes, pancreatic cancer, and metformin therapy. Front Physiol 5: 426.
  • Gonzalez A, Camello PJ, Pariente JA, Salido GM (1997). Free cytosolic calcium levels modify intracellular pH in rat pancreatic acini. Biochem Biophys Res Commun 230: 652–656.
  • Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM (2011). Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 50: 250–260.
  • Gonzalez A, Nuñez AM, Granados MP, Pariente JA, Salido GM (2006). Ethanol impairs CCK-8-evoked amylase secretion through Ca2+-mediated ROS generation in mouse pancreatic acinar cells. Alcohol 38: 51–57.
  • Gonzalez A, Pariente JA, Salido GM (2008). Ethanol impairs calcium homeostasis following CCK-8 stimulation in mouse pancreatic acinar cells. Alcohol 42: 565–573.
  • Gonzalez A, Salido GM (2001). Participation of mitochondria in calcium signalling in the exocrine pancreas. J Physiol Biochem 57: 331–339.
  • Gonzalez A, Santofimia-Castaño P, Rivera-Barreno R, Salido GM (2012). Cinnamtannin B-1, a natural antioxidant that reduces the effects of H2 O2 on CCK-8-evoked responses in mouse pancreatic acinar cells. J Physiol Biochem 68: 181–191.
  • Gonzalez A, Schulz I, Schmid A (2000). Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. J Biol Chem 275: 38680–38686.
  • Granados MP, Salido GM, Pariente JA, Gonzalez A (2004). Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion 3: 285–296.
  • Gülben K, Özdemir H, Berberoğlu U, Mersin H, Ýrkin F, Cakýr E, Aksaray S (2010). Melatonin modulates the severity of taurocholate-induced acute pancreatitis in the rat. Dig Dis Sci 55: 941–946.
  • Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z (2012). Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology 12: 257–263.
  • Huether G (1994). Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann NY Acad Sci 719: 146–158.
  • Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001). Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280: C110–118.
  • Irrera N, Bitto A, Interdonato M, Squadrito F, Altavilla D (2014). Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis. World J Gastroenterol 20: 16535–16543.
  • Jaworek J (2006). Ghrelin and melatonin in the regulation of pancreatic exocrine secretion and maintaining of integrity. J Physiol Pharmacol 57: 83–96.
  • Jaworek J, Konturek SJ (2014). Hormonal protection in acute pancreatitis by ghrelin, leptin and melatonin. World J Gastroenterol 20: 16902–16912.
  • Jaworek J, Konturek SJ, Leja-Szpak A, Nawrot K, Bonior J, Tomaszewska R, Stachura J, Pawlik WW (2002). Role of endogenous melatonin and its MT2 receptor in the modulation of caerulein-induced pancreatitis in the rat. J Physiol Pharmacol 53: 791–804.
  • Jaworek J, Leja-Szpak A (2014). Melatonin influences pancreatic cancerogenesis. Histol Histopathol 29: 423–431.
  • Jaworek J, Leja-Szpak A, Bonior J, Nawrot K, Tomaszewska R, Stachura J, Sendur R, Pawlik W, Brzozowski T, Konturek SJ (2003). Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J. Pineal Res 34: 40–52.
  • Jaworek J, Leja-Szpak A, Kot M, Jaworek A, Nawrot-Porbka K, Bonior J, Szklarczyk J (2014). The role of melatonin in pancreatic protection: could melatonin be used in the treatment of acute pancreatitis? Curr Pharm Des 20: 4834–4840.
  • Jaworek J, Nawrot K, Konturek SJ, Leja-Szpak A, Thor P, Pawlik WW (2004). Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro. J Pineal Res 36: 155–164.
  • Jaworek J, Nawrot-Porabka K, Leja-Szpak A, Bonior J, Szklarczyk J, Kot M, Konturek SJ, Pawlik WW (2007). Melatonin as modulator of pancreatic enzyme secretion and pancreatoprotector. J Physiol Pharmacol 58: 65–80.
  • Jaworek J, Zwirska-Korczala K, Szklarczyk J, Nawrot-Porąbka K, LejaSzpak A, Jaworek AK, Tomaszewska R (2010). Pinealectomy aggravates acute pancreatitis in the rat. Pharmacol Rep 62: 864–873.
  • Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS (2010). Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 48: 239–250.
  • Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Beyer C, Kipp M, Zendedel A (2014). Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 232: 2835–2846.
  • Lee JS, Hou X, Bishop N, Wang S, Flack A, Cho WJ, Chen X, Mao G, Taatjes DJ, Sun F et al. (2013). Aquaporin-assisted and ER-mediated mitochondrial fission: a hypothesis. Micron 47: 50–58.
  • Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010). Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49: 248–255.
  • Leja-Szpak A, Jaworek J, Szklarczyk J, Konturek SJ, Pawlik WW (2007). Melatonin stimulates HSP27 phosphorylation in human pancreatic carcinoma cells (PANC-1). J Physiol Pharmacol 58: 177–188.
  • Leung PS, Ip SP (2006). Pancreatic acinar cell: its role in acute pancreatitis. Int J Biochem Cell Biol 38: 1024–1030.
  • Liu LF, Qin Q, Qian ZH, Shi M, Deng QC, Zhu WP, Zhang H, Tao XM, Liu Y (2014). Protective effects of melatonin on ischemiareperfusion induced myocardial damage and hemodynamic recovery in rats. Eur Rev Med Pharmacol Sci 18: 3681–3686.
  • Longnecker DS (2014). Anatomy and Histology of the Pancreas, 2014. 10.3998/panc.2014.3.
  • Lugea A, Waldron RT, French SW, Pandol SJ (2011). Drinking and driving pancreatitis: links between endoplasmic reticulum stress and autophagy. Autophagy 7: 783–785.
  • Lv D, Cui PL, Yao SW, Xu YQ, Yang ZX (2012). Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells. Chin J Cancer Res 24: 310–316.
  • Manchester LC, Poeggeler B, Alvares FL, Ogden GB, Reiter RJ (1995). Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cell Mol Biol Res 41: 391–395.
  • Martin-Cano FE, Camello-Almaraz C, Acuña-Castroviejo D, Pozo MJ, Camello PJ (2014). Age-related changes in mitochondrial function of mouse colonic smooth muscle: beneficial effects of melatonin. J Pineal Res 56: 163–174.
  • McArthur AJ, Hunt AE, Gillette MU (1997). Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138: 627–634.
  • Mishra PK, Raghuram GV, Jain D, Jain SK, Khare NK, Pathak N (2014). Mitochondrial oxidative stress-induced epigenetic modifications in pancreatic epithelial cells. Int J Toxicol 33: 116–129.
  • Muc-Wierzgon M, Nowakowska-Zajdel E, Zubelewicz B, Wierzgon J, Kokot T, Klakla K, Szkilnik R, Wiczkowski A (2003). Circadian fluctuations of melatonin, tumor necrosis factor-alpha and its soluble receptors in the circulation of patients with advanced gastrointestinal cancer. J Exp Clin Cancer Res 22: 171–178.
  • Mühlbauer E, Gross E, Labucay K, Wolgast S, Peschke E (2009). Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol 606: 61–71.
  • Mukherjee R, Criddle DN, Gukovskaya A, Pandol S, Petersen OH, Sutton R (2008). Mitochondrial injury in pancreatitis. Cell Calcium 44: 14–23.
  • Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, MuñozCastañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C et al. (2006). Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 40: 195–203.
  • Murphy MP (2012). Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16: 476–495.
  • Nawrot-Porąbka K, Jaworek J, Leja-Szpak A, Szklarczyk J, Konturek SJ, Reiter RJ (2013). Luminal melatonin stimulates pancreatic enzyme secretion via activation of serotonin-dependent nerves. Pharmacol Rep 65: 494–504.
  • Nawrot-Porabka K, Jaworek J, Leja-Szpak A, Szklarczyk J, Kot M, Mitis-Musioł M, Konturek SJ, Pawlik WW (2007). Involvement of vagal nerves in the pancreatostimulatory effects of luminal melatonin, or its precursor L-tryptophan. Study in the rats. J Physiol Pharmacol 58: 81–95.
  • Padillo FJ, Ruiz-Rabelo JF, Cruz A, Perea MD, Tasset I, Montilla P, Túnez I, Muntané J (2010). Melatonin and celecoxib improve the outcomes in hamsters with experimental pancreatic cancer. J Pineal Res 49: 264–270.
  • Palmieri VO, Grattagliano I, Palasciano G (2007). Ethanol induces secretion of oxidized proteins by pancreatic acinar cells. Cell Biol Toxicol 23: 459–464.
  • Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ (2009). Phytomelatonin: a review. J Exp Bot 60: 57–69.
  • Parent ME, El-Zein M, Rousseau MC, Pintos J, Siemiatycki J (2012). Night work and the risk of cancer among men. Am J Epidemiol 76: 751–759.
  • Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM (2014). Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 14: 452–466.
  • Petersen OH (2004). Local and global Ca2+ signals: physiology and pathophysiology. Biol Res 37: 661–664.
  • Putney JW (1988). A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12.
  • Qi W, Tan DX, Reiter RJ, Kim SJ, Manchester LC, Cabrera J, Sainz RM, Mayo JC (1999). Melatonin reduces lipid peroxidation and tissue edema in cerulein-induced acute pancreatitis in rats. Dig Dis Sci 44: 2257–2262.
  • Reczek CR, Chandel NS (2014). ROS-dependent signal transduction. Curr Opin Cell Biol 33: 8–13.
  • Rivera-Barreno R, del Castillo-Vaquero A, Salido GM, Gonzalez A (2010). Effect of cinnamtannin B-1 on cholecystokinin-8- evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 37: 980–988.
  • Ruiz-Rabelo J, Vazquez R, Arjona A, Perea D, Montilla P, Tunez I, Muntane J, Padillo J (2011). Improvement of capecitabine antitumoral activity by melatonin in pancreatic cancer. Pancreas 40: 410–414.
  • Sah RP, Dawra RK, Saluja AK (2013). New insights into the pathogenesis of pancreatitis. Curr Opin Gastroenterol 29: 523–530.
  • Santofimia-Castaño P, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A (2014). Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol Cell Biochem 397: 75–86.
  • Santofimia-Castaño P, Ruy DC, Salido GM, González A (2013). Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. J Physiol Biochem 69: 897–908.
  • Shalbueva N, Mareninova OA, Gerloff A, Yuan J, Waldron RT, Pandol SJ, Gukovskaya AS (2013). Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology 144: 437–446.
  • Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012). Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351: 152–166.
  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.
  • Sun CK, Lee FY, Kao YH, Chiang HJ, Sung PH, Tsai TH, Lin YC, Leu S, Wu YC, Lu HI et al. (2015). Systemic combined melatoninmitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res 58: 137–150.
  • Sweiry JH, Shibuya I, Asada N, Niwa K, Doolabh K, Habara Y, Kanno T, Mann GE (1999). Acute oxidative stress modulates secretion and repetitive Ca2+ spiking in rat exocrine pancreas. Biochim Biophys Acta 1454: 19–30.
  • Tapia JA, Salido GM, González A (2010). Ethanol consumption as inductor of pancreatitis. World J Gastrointest Pharmacol Ther 1: 3–8.
  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999). Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18: 4999–5008.
  • Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA (2012). Melatonin potentiates chemotherapyinduced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53: 91–98.
  • Vician M, Zeman M, Herichova I, Jurani M, Blazicek P, Matis P (1999). Melatonin content in plasma and large intestine of patients with colorectal carcinoma before and after surgery. J Pineal Res 27: 164–169.
  • Voronina S, Collier D, Chvanov M, Middlehurst B, Beckett AJ, Prior IA, Criddle DN, Begg M, Mikoshiba K, Sutton R et al. (2015). The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells. Biochem J 465: 405–412.
  • Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009). Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787: 1374–1382.
  • Weber H, Jonas L, Wakileh M, Krüger B (2014). Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells. Can J Physiol Pharmacol 92: 215–225.
  • Williams JA (2010). Regulation of acinar cell function in the pancreas. Curr Opin Gastroenterol 26: 478–483.
  • Xu C, Wu A, Zhu H, Fang H, Xu L, Ye J, Shen J (2013). Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed Pharmacother 67: 133–139.
  • Yu JH, Kim H (2014). Oxidative stress and inflammatory signaling in cerulein pancreatitis. World J Gastroenterol 20: 17324–17329. Zhang HM, Zhang Y (2014). Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57: 131–146.
  • Zhang Y, Cook A, Kim J, Baranov SV, Jiang J, Smith K, Cormier K, Bennett E, Browser RP, Day AL et al. (2013). Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55: 26–35
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Amelioration of subchronic acrylamide toxicity in large intestine of rats byorganic dried apricot intake

Mehmet Erman ERDEMLİ, Zümrüt DOĞAN, Yilmaz ÇİĞREMİŞ, Müslüm AKGÖZ, Eyüp ALTINÖZ, Murat GEÇER, Yusuf TÜRKÖZ

The effects of topical melatonin on oxidative stress, apoptosis signals,and p53 protein expression during cutaneous wound healing

Azize ŞENER, Özge ÇEVİK, Özge DOĞAN, Nazli Gül ALTINDİŞ, Halil AKSOY, Betül OKUYAN

Melatonin induces antiproliferative activity through modulation of apoptoticpathway in H-ras oncogene transformed 5RP7 cells

Ayşe KAPLAN, Gülşen Akalin ÇİFTÇİ, Hatice Mehtap KUTLU

Expression profiles of genes related to melatonin and oxidative stress in human renal proximal tubule cells treated with antibiotic amphotericin B and its modified forms

Joanna GOLA, Aleksandra SKUBIS, Bartosz SIKORA, Celina KRUSZNIEWSKA-RAJS, Jolanta ADAMSKA, Urszula MAZUREK, Barbara STRZALKA-MROZIK, Grzegorz CZERNEL, Mariusz GAGOS

Effects of photoperiod variations and alpha-lipoic acid treatment on melatonin,cortisol, and oxidative stress levels in the blood of rats

Cahide ÇEVİK, Recep ASLAN

Melatonin is a potent modulator of antioxidative defense and cellular proliferation against aluminum toxicity in rats

Nihal Ömür BULAN, Guner SARIKAYA-UNAL, Sevim TUNALI, Pelin Arda PİRİNÇÇİ, Refiye YANARDAG

Role of melatonin on calcium signaling and mitochondrial oxidativestress in epilepsy: focus on TRP channels

Mustafa NAZIROĞLU

The effects of agomelatine and melatonin on ECoG activity of absenceepilepsy model in WAG/Rij rats

Hatice AYGÜN, Duygu AYDIN, Sema İNANIR, Fatih EKİCİ, Mustafa AYYILDIZ, Erdal AĞAR

The effects of midazolam and etomidate on the antioxidant system in the rat liver

Dilek BAYRAM, Meral ÖNCÜ, Efkan UZ, Haci Ramazan YILMAZ, Ayşe YİĞİT, Ahmet KOÇAK

Mitochondrial DNA-related disorders: emphasis on mechanisms and heterogeneity

Umut CAGIN, Jose Antonio ENRIQUEZ