Increased ribonuclease activity in Solanum tuberosum L. transformed with heterologous genes of apoplastic ribonucleases as a putative approach for production of virus resistant plants

Increased ribonuclease activity in Solanum tuberosum L. transformed with heterologous genes of apoplastic ribonucleases as a putative approach for production of virus resistant plants

Viral pathogens seriously decrease the yield of potato (Solanum tuberosum L.) –an important agricultural crop. Therefore, there is a demand for potato cultivars resistant to multiple viruses. Ribonucleases (RNases) are supposed to be engaged to antiviral response in plants. Heterologous RNase gene expression provides a tool for production of cultivars with multiple resistance to viruses and viroids. Transgenic potato cultivars Luhivs’ka and Lasynak with heterologous genes bov and ZRNase II of apoplastic RNases from Bos taurus and Zinnia elegans respectively were obtained via Agrobacterium-mediated transformation. The presence of bov and ZRNase II transgenes was confirmed by PCR analysis. RNase activity was examined by modified Oleshko method. Plants with heterologous ribonuclease genes had higher level of RNase activity compared to nontransgenic ones. Transgenic plants inoculated with Potato virus Y, PVY (genus Potyvirus, family Potyviridae) demonstrated delayed and less severe symptoms of viral infection. DAS-ELISA confirmed the presence of viral antigens both in transformed and control plants. Visual manifestations of viral infection in transgenic potatoes were milder than in control plants and their development was delayed, but complete elimination of the virus did not occur.

___

  • Aseel D, Makhlouf A, Riad S, Elmorsi A, Fegla G et al. (2015). Two isolates of Potato virus Y (PVY) and the response of different potato cultivars against the viral infection. Journal of Virological Antiviral Research 4 (4): 1-5. doi: 10.4172/2324- 8955.1000145.
  • Beaujean A, Sangwan R, Lecardonnel A, Sangwan-Norreel B (1998). Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. Journal of Experimental Botany 49 (326): 1589-1595. doi: 10.1093/jexbot/49.326.1589.
  • Blanchard A, Rolland M, Lacroix C, Kerlan C, Jacquot E (2008). Potato virus Y: a century of evolution. Current Topics in Virology 7: 21-32.
  • Boquel S, Zhang J, Goyer C, Giquere M-A, Clark C et al. (2014). Effect of insecticide-treated potato plants on aphid behavior and potato virus Y acquisition. Pest Management Science 71 (8): 1106-1112. doi: 10.1002/ps.3892.
  • Budzanivska I, Ovcharenko P, Kharina A, Boubriak I, Polischuk V (2014). Nucleotide and amino acid sequences of a coat protein of Ukrainian isolate of Potato virus Y: comparison with homologous sequences of other isolates and phylogenetic analysis. Biopolymers and Cell 20: 41-148. doi: 10.7124/ bc.00088D.
  • Budzanivska I, Polishchuk V (2014). Phylogenetic analysis of RNAcontaining plant viruses circulating in Ukraine. Kiev, Ukraine: Kyiv University (in Ukrainian).
  • Cao X, Lu Y, Di D, Zhang Z, Liu H et al. (2013). Enhanced Virus Resistance in Transgenic Maize Expressing a dsRNA-Specific Endoribonuclease Gene from E. coli. PLoS One 8 (10): 1228- 1232. doi: 10.1371/journal.pone.0060829.
  • Dalakouras A, Dadami E, Wassenegger M (2015). Engineering viroid resistance. Viruses, 7 (2): 634-646. doi: 10.3390/v7020634.
  • Dupuis B, Cadby J, Goy G, Tallant M, Derron J et al. (2017). Control of Potato virus Y (PVY) in seed potatoes by oil spraying, straw mulching and intercropping. Plant Pathology 66 (6): 960-969. doi: 10.1111/ppa.12698.
  • El-Absawy EA, Mahmoud A, Hemeida AA, Helmy M (2012). Molecular variation of Potato virus Y isolated from Egypt. International Journal of Virology 8 (1): 81-89. doi: 10.3923/ ijv.2012.81.89.
  • Hussain A, Arif M, Hin P, Hussain B (2016). A review on aphidborne virus (Potato Virus Y). Journal of Entomology and Zoology Studies 4 (3): 189-192.
  • Karasev A, Gray S (2013). Continuous and emerging challenges of Potato virus Y in potato. Annual Review Phytopathology 51: 571-586. doi: 10.1146/annurev-phyto-082712-102332.
  • Kochetov A, Shumny V (2017). Transgenic plants as genetic models for studying functions of plant genes. Russian Journal of Genetics: Applied Research 7 (4): 421-427. doi: 10.1134/ S2079059717040050.
  • Loebenstein G, Gaba V (2012). Viruses of Potato. Advances in Virus Research 84: 209-246. doi: 10.1016/B978-0-12-394314- 9.00006-3.
  • Milosevic S, Simonovic A, Cingel A, Nikolic D, Ninkovic S (2013). Introduction of dsRNA-specific ribonuclease pac1 into Impatiens walleriana provides resistance to Tomato spotted wilt virus. Scientia Horticulturae 164: 499-506. doi: 10.1016/j. scienta.2013.10.015.
  • Ogawa T, Toguri T, Kudoh H, Okamura M, Momma T et al. (2005). Double-stranded RNA-specific ribonuclease confers tolerance against chrysanthemum stunt viroid and Tomato spotted wilt virus in transgenic chrysanthemum plants. Breeding Science 55 (1): 49-55. doi: 10.1270/jsbbs.55.49.
  • Ohno H, Ehara Y (2005). Expression of ribonuclease gene in mechanically injured or virus-inoculated Nicotiana tabacum leaves. Tohoku Journal of Agricultural Research 55: 99-109.
  • Oleshko P, Tkachenko I, Kusen I (1981). Purification and some properties of ribonucleases from the eggs and embryos from Misgurnus fossilis. Ukrainian Biochemical Journal 26 (12): 2144-2150 (in Ukrainian).
  • Perring T, Gruenhagen N, Farrr C (1999). Management of plant viral diseases through chemical control of insect vectors. Annual Review of Entomology 44: 457-481. doi: 10.1146/annurev. ento.44.1.457.
  • Quenouille J, Vassilakos N, Moury B (2013). Potato virus Y: a major crop pathogen that has provided major insight into the evolution of viral pathogenicity. Molecular Plant Pathology 14 (5): 439-452. doi: 10.1111/mpp.12024.
  • Raines R (1998). Ribonuclease A. Chemical Reviews 98 (3): 1045- 1066. doi: 10.1021/cr960427h.
  • Sambrook J, Fritsch E, Maniatis T (1989). Molecular Cloning. 2nd ed. New York, NY, USA: Cold Spring Harbor Laboratory. doi: 10.1002/jobm.3620300824.
  • Sangaev S, Kochetov A, Ibragimova SS, Levenko B, Shumny V (2011). Physiological role of extracellular ribonucleases of higher plants. Russian Journal of Genetics: Applied Research 1 (1): 44-50. doi: 10.1134/S2079059711010060.
  • Sangaev S, Trifonova E, Titov S, Romanova A, Kolodyazhnaya Y et al. (2007). Effective expression of the gene encoding an extracellular ribonuclease of Zinnia elegans in the SR1 Nicotiana tabacum plants. Russian Journal of Genetics 43 (7): 831-833. doi: 10.1134/S1022795407070186.
  • Sano T, Nagayama A, Ogawa T, Ishida I, Okada Y (1997). Transgenic potato expressing a double-stranded RNA-specific ribonucleases is resistant to potato spindle tuber viroid. Nature Biotechnology 15 (12): 1290-1294. doi: 10.1038/nbt1197-1290.
  • Sugawara T, Trifonova E, Kochetov A, Kanayama Y (2016). Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco. BMC Plant Biology 16 (3): 147-152. doi: 10.1186/s12870-016-0928-8.
  • Trifonova, E, Romanova A, Sangaev S, Sapotsky M, Malinovsky V et al. (2012). Inducible expression of the gene of Zinnia elegans coding for extracellular ribonuclease in Nicotiana tabacum plants. Biologia Plantarum 56: 571-574. doi: 10.1007/s10535- 011-0206-4.
  • Trifonova E, Sapotsky M, Komarova L, Scherban A, Shumny V et al. (2007). Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus. Plant Cell Reports 26: 1121-1126. doi: 10.1007/s10535-011- 0206-4.
  • Watanabe T, Ogawa H, Takahashi I, Ishida Y, Takeuchi Y et al. (1995). Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease. FEBS Letters 372 (2-3): 165-168. doi: 10.1016/0014-5793(95)00901-K.
  • Yang X, Niu L, Zhang W, He H, Yang J et al. (2019). Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1. Transgenic Research 28: 129-140. doi: 10.1007/s11248-018- 0108-8.
  • Ye Z-H, Droste DL (1996). Isolation and characterization of cDNAs encoding xylogenesis-associated and wounding-induced ribonucleases in Zinnia elegans. Plant Molecular Biology 30: 697-709. doi: 10.1007/BF00019005.
  • Zhang L, French R, Langenberg W, Mitra A (2001). Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Research 10 (1): 13-19. doi: 10.1023/A:1008931706679.