High dietary fructose load aggravates lipid metabolism in the liver of Wistar rats through imbalance between lipogenesis and fatty acid oxidation

High dietary fructose load aggravates lipid metabolism in the liver of Wistar rats through imbalance between lipogenesis and fatty acid oxidation

Fructose ingestion is often associated with hepatic steatosis and hypertriglyceridemia. The homeostasis of hepatic lipids is mainly determined by the interplay of lipogenesis and fatty acid β-oxidation. In this study, we hypothesized that high fructose intake disturbs hepatic lipid metabolism through an imbalance between these processes. Therefore, we analyzed the effects of a 9-week-long consumption of a 60% fructose solution on physiological parameters, glycemia, and blood lipid profiles in male Wistar rats. The expression of key regulators of fatty acid oxidation (FAO) and lipogenesis in the liver were assessed by western blot and quantitative polymerase chain reaction. The results showed that fructose-fed rats were normoglycemic and hypertriglyceridemic with visceral adiposity, but without hepatic lipid deposition. A high-fructose diet is associated with increased nuclear levels of the lipogenic regulator sterol regulatory element binding protein 1c (SREBP-1c), which was followed by increased acetyl-CoA carboxylase and fatty acid synthase mRNAs. The nuclear level of the FAO transcriptional regulators peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1) and lipin-1 were unaltered, while carnitine palmitoyltransferase 1 (CPT1) mRNA was significantly decreased. Overall, our findings showed that liquid fructose overconsumption is associated with perturbation of hepatic lipid metabolism through predominance of lipogenesis over β-oxidation, resulting in spillover of triglycerides and visceral adiposity.

___

  • Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004). Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25: 495-520.
  • Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005). "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309-322.
  • Collison KS, Zaidi MZ, Saleh SM, Inglis A, Mondreal R, Makhoul NJ, Bakheet R, Burrows J, Milgram NW, Al-Mohanna FA (2011). Effect of trans-fat, fructose and monosodium glutamate feeding on feline weight gain, adiposity, insulin sensitivity, adipokine and lipid profile. Br J Nutr 106: 218-226.
  • de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MA (2009). Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr 101: 1178-1184.
  • Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010). Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299: E685-694.
  • Djordjevic A, Vojnovic Milutinovic D, Tanic N, Bursac B, Vasiljevic A, Velickovic N, Matic G (2012). Identification of suitable reference genes for gene expression studies in tissues from fructose-fed rats. Adv Sci Lett 5: 560-565.
  • Duncombe WG (1964). The colorimetric micro-determination of non-esterified fatty acids in plasma. Clin Chim Acta 9: 122-125.
  • Fernandez-Alvarez A, Alvarez MS, Gonzalez R, Cucarella C, Muntane J, Casado M (2011). Human SREBP1c expression in liver is directly regulated by peroxisome proliferator-activated receptor α (PPARα). J Biol Chem 286: 21466-21477.
  • Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC Jr, Kelly DP (2006). Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 4: 199-210.
  • Fletcher MJ (1968). A colorimetric method for estimating serum triglycerides. Clin Chim Acta 22: 393-397.
  • Folch J, Lees M, Sloane Stanley GH (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509.
  • Horton JD, Goldstein JL, Brown MS (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131.
  • Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V et al. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5: 415-425.
  • Kawano Y, Cohen DE (2013). Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48: 434-441.
  • Kelley GL, Allan G, Azhar S (2004). High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145: 548-555.
  • Lemieux I, Poirier P, Bergeron J, Almeras N, Lamarche B, Cantin B, Dagenais GR, Despres JP (2007). Hypertriglyceridemic waist: a useful screening phenotype in preventive cardiology? Can J Cardiol 23 Suppl B: 23B-31B.
  • Leone TC, Weinheimer CJ, Kelly DP (1999). A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. P Natl Acad Sci USA 96: 7473-7478.
  • Menard SL, Croteau E, Sarrhini O, Gelinas R, Brassard P, Ouellet R, Bentourkia M, van Lier JE, Des Rosiers C, Lecomte R et al. (2010). Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 298: E1049-1057.
  • Miller CW, Ntambi JM (1996). Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. P Natl Acad Sci USA 93: 9443-9448.
  • Minnich A, Tian N, Byan L, Bilder G (2001). A potent PPARα agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle. Am J Physiol Endocrinol Metab 280: E270-279.
  • Moreno M, Lombardi A, Silvestri E, Senese R, Cioffi F, Goglia F, Lanni A, de Lange P (2010). PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res 2010: 435689.
  • Newell-Fugate AE, Taibl JN, Clark SG, Alloosh M, Sturek M, Krisher RL (2014). Effects of diet-induced obesity on metabolic parameters and reproductive function in female Ossabaw minipigs. Comp Med 64: 44-49.
  • Nunes PM, Wright AJ, Veltien A, van Asten JJ, Tack CJ, Jones JG, Heerschap A (2014). Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J 28: 1988-1997.
  • Oosterveer MH, Grefhorst A, van Dijk TH, Havinga R, Staels B, Kuipers F, Groen AK, Reijngoud DJ (2009). Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice. J Biol Chem 284: 34036-34044.
  • Panchal SK, Brown L (2011). Rodent models for metabolic syndrome research. J Biomed Biotechnol 2011: 351982.
  • Rebollo A, Roglans N, Baena M, Padrosa A, Sanchez RM, Merlos M, Alegret M, Laguna JC (2014a). Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats. J Nutr Biochem 25: 250-258.
  • Rebollo A, Roglans N, Baena M, Sanchez RM, Merlos M, Alegret M, Laguna JC (2014b). Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim Biophys Acta 1841: 514-524.
  • Rodriguez-Calvo R, Barroso E, Serrano L, Coll T, Sanchez RM, Merlos M, Palomer X, Laguna JC, Vazquez-Carrera M (2009). Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology 49: 106-115.
  • Roglans N, Sanguino E, Peris C, Alegret M, Vazquez M, Adzet T, Diaz C, Hernandez G, Laguna JC, Sanchez RM (2002). Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 302: 232-239.
  • Roglans N, Vila L, Farre M, Alegret M, Sanchez RM, Vazquez-Carrera M, Laguna JC (2007). Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45: 778-788.
  • Rutledge AC, Adeli K (2007). Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 65: S13-23.
  • Sam S, Haffner S, Davidson MH, D'Agostino RB Sr, Feinstein S, Kondos G, Perez A, Mazzone T (2009). Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes. Diabetes Care 32: 1916-1920.
  • Spector T (1978). Refinement of the Coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem 86: 142-146.
  • Sun SZ, Empie MW (2012). Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond) 9: 89.
  • Tappy L, Le KA (2015). Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 15: 627.
  • Tappy L, Mittendorfer B (2012). Fructose toxicity: is the science ready for public health actions? Curr Opin Clin Nutr Metab Care 15: 357-361.
  • Vasiljevic A, Bursac B, Djordjevic A, Milutinovic DV, Nikolic M, Matic G, Velickovic N (2014). Hepatic inflammation induced by high-fructose diet is associated with altered 11βHSD1 expression in the liver of Wistar rats. Eur J Nutr 53: 1393-1402.
  • Vasiljevic A, Velickovic N, Bursac B, Djordjevic A, Milutinovic DV, Nestorovic N, Matic G (2013). Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J Nutr Biochem 24: 1790-1797.
  • Vega RB, Huss JM, Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20: 1868-1876.
  • Velickovic N, Djordjevic A, Vasiljevic A, Bursac B, Milutinovic DV, Matic G (2013). Tissue-specific regulation of inflammation by macrophage migration inhibitory factor and glucocorticoids in fructose-fed Wistar rats. Br J Nutr 110: 456-465.
  • Wang CS, Fukuda N, Ontko JA (1984). Studies on the mechanism of hypertriglyceridemia in the genetically obese Zucker rat. J Lipid Res 25: 571-579.